LIU Yang, XU Caijun, WEN Yangmao, LI Zhicai. InSAR Inversion and Boundary Element Analysis of the Zadoi Mw 5.9 Earthquake Fault Slip[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1678-1686. DOI: 10.13203/j.whugis20190368
Citation: LIU Yang, XU Caijun, WEN Yangmao, LI Zhicai. InSAR Inversion and Boundary Element Analysis of the Zadoi Mw 5.9 Earthquake Fault Slip[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1678-1686. DOI: 10.13203/j.whugis20190368

InSAR Inversion and Boundary Element Analysis of the Zadoi Mw 5.9 Earthquake Fault Slip

Funds: 

The National Natural Science Foundation of China 41874011

The National Natural Science Foundation of China 41774011

The National Natural Science Foundation of China 41861134009

the National Key Research and Development Program of China 2018YFC1503603

More Information
  • Author Bio:

    LIU Yang, PhD, associate professor, specializes in InSAR data processing and geophysical interpretation. E-mail: Yang.Liu@sgg.whu.edu.cn

  • Received Date: January 14, 2020
  • Published Date: November 18, 2020
  •   Objectives  At 15:14 on October 17, 2016 (Beijing time), an earthquake with a magnitude of Mw 5.9 occurred in Zadoi County, Qinghai Province, which is located in the Qiangtang block in the middle of the Tibetan Plateau. The occurrence of the event provides an opportunity to deepen the understanding of the movement characteristic of regional fault zone. The fault slip model of the Zadoi earthquake is further investigated with geodetic observation to understand the fault rupture property of the event better. The rupture characteristic of typical faults around the epicenter is quantitatively studied using numerical method, which can make up for the inadequacies of qualitative interpretation of seismic fault rupture using feature of earthquake sequence and regional geological structure in the previous studies.
      Methods  To study this earthquake, coseismic deformation field was obtained using interferometric synthetic aperture radar (InSAR) technique and Sentinel-1 satellite ascending and descending synthetic aperture radar (SAR) data. On the basis of comparative analysis of existing studies related to rupture model of seismic fault, the fault slip model of this event was then inverted with the elastic half-space dislocation theory and non-negative least squares method. The average rakes of typical faults around the epicenter under regional strain field were calculated with boundary element method, and the earthquake fault slip was finally analyzed by combining the characteristic of regional faults, the fault slip model of the Zadoi earthquake and the result calculated by boundary element method.
      Results  The main results are given as follows: (1) The ascending and descending InSAR coseismic deformation field is continuous and smooth as a whole, and the local surface deformation feature around the epicenter is obvious. The standard deviations for the ascending and descending observations are 4.3 mm and 3.4 mm, respectively. The maximum subsidences along the line of sight of ascending and descending orbits are -3.6 cm and-3.8 cm, respectively. The deformation on both sides of the earthquake fault is asymmetrical.(2)The fault slip does not extend to the surface, which is mainly concentrated at-3.80 km to -16.17 km depth, and there is one significant slip area. The maximum value of fault slip is about 0.27 m, which is located at-7.61 km to -8.56 km depth. The average slip angle is -36.04°. The seismic moment is 7.70×1017 N·m, and the corresponding moment magnitude is Mw 5.9, which is generally consistent with the existing results derived from seismic wave and InSAR observations. (3)The fault slip model can explain the observed coseismic deformation field better. The root mean squares of the fitting residuals for the ascending and descending observations are 4.4 mm and 3.7 mm, which are close to the standard deviations of 4.3 mm and 3.4 mm for the corresponding observations. (4) The fault slip of the Zadoi Mw 5.9 earthquake may be related to the rupture of the NEE trending fault under regional strain field, which is dominated by left-lateral strike-slip with a normal component.
      Conclusions  The obtained ascending and descending InSAR deformation field can accurately reflect the coseismic deformation characteristics of the Zadoi Mw 5.9 earthquake. The derived fault slip model can finely reveal the coseismic slip distribution below the earth's surface. The analysis of the earthquake fault slip with boundary element method can make up for the inadequacies of qualitative interpretation in the previous studies.The related results can provide references for the study on the regional crustal movement and deformation, active fault and earthquake preparation.
  • [1]
    Hanssen R F. Radar Interferometry: Data Interpretation and Error Analysis[M]. Dordrecht, Netherlands: Kluwer Academic Publishers, 2001
    [2]
    许才军, 王华, 黄劲松. GPS与InSAR数据融合研究展望[J].武汉大学学报·信息科学版, 2003, 28(S): 58-61 http://ch.whu.edu.cn/article/id/4790

    Xu Caijun, Wang Hua, Huang Jinsong. Prospect on the Intergration of GPS and InSAR Data[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S): 58-61 http://ch.whu.edu.cn/article/id/4790
    [3]
    Massonnet D, Rossi M, Carmona C, et al. The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry[J]. Nature, 1993, 364(6 433): 138-142 doi: 10.1038/364138a0
    [4]
    Weston J, Ferreira A M, Funning G J. Global Compilation of Interferometric Synthetic Aperture Radar Earthquake Source Models: 1. Comparisons with Seismic Catalogs[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B8): B08408 doi: 10.1029/2010JB008132/full
    [5]
    温扬茂, 许才军, 刘洋, 等.利用断层自动剖分技术的2008年青海大柴旦Mw 6.3级地震InSAR反演研究[J].武汉大学学报·信息科学版, 2012, 37(4): 458-462 http://ch.whu.edu.cn/article/id/168

    Wen Yangmao, Xu Caijun, Liu Yang, et al. Source Parameters of 2008 Qinghai Dachaidan Mw 6.3 Earthquake from InSAR Inversion and Automated Fault Discretization Method[J]. Geomatics and Information Science of Wuhan University, 2012, 37(4): 458-462 http://ch.whu.edu.cn/article/id/168
    [6]
    苏小宁, 王振, 孟国杰, 等. GPS观测的2015年尼泊尔Ms 8.1级地震震前应变积累及同震变形特征[J].科学通报, 2015, 60(22): 2 115-2 123 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201522007

    Su Xiaoning, Wang Zhen, Meng Guojie, et al. Pre-seismic Strain Accumulation and Coseismic Deformation of the 2015 Nepal Ms 8.1 Earthquake Observed by GPS[J]. China Science Bulletin, 2015, 60(22): 2 115-2 123 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201522007
    [7]
    Zhao D, Qu C, Shan X, et al. InSAR and GPS Derived Coseismic Deformation and Fault Model of the 2017 Ms 7.0 Jiuzhaigou Earthquake in the Northeast Bayanhar Block[J]. Tectonophysics, 2018, 726: 86-99 doi: 10.1016/j.tecto.2018.01.026
    [8]
    唐哲明, 韩同林.青藏高原地体的初步划分及构造特征简述[J].中国地质科学院院报, 1990, 21: 121-128 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000001800433

    Tang Zheming, Han Tonglin. Structural Features and Tentative Division of the Terranes in Qinghai-Xizang Plateau[J]. Bulletin of the Chinese Academy of Geological Sciences, 1990, 21: 121-128 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000001800433
    [9]
    邓起东, 张培震, 冉勇康, 等.中国活动构造基本特征[J].中国科学D辑:地球科学, 2002, 32(12): 1 020-1 031 http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200212007

    Deng Qidong, Zhang Peizhen, Ran Yongkang, et al. Basic Characteristics of Active Tectonics of China[J]. Science in China Series D: Earth Sciences, 2002, 32(12): 1 020-1 031 http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200212007
    [10]
    邓起东, 冉勇康, 杨晓平, 等.中国活动构造图(1:400万)[M].北京:地震出版社, 2007

    Deng Qidong, Ran Yongkang, Yang Xiaoping, et al. Map of Active Tectonics in China (1:4 000 000)[M]. Beijing: Seismological Press, 2007
    [11]
    梁姗姗, 刘敬光, 邹立晔, 等. 2016年10月17日青海杂多Ms 6.2地震震源机制解测定[J].国际地震动态, 2017(9): 12-17 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gjdzdt201709004

    Liang Shanshan, Liu Jingguang, Zou Liye, et al. Determination of the Focal Mechanism Solution of the October 17 2016 Ms 6.2 Earthquake in ZadoiQinghai[J].Recent Developments in World Seismology, 2017(9): 12-17 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gjdzdt201709004
    [12]
    Qiu J, Qiao X. A Study on the Seismogenic Structure of the 2016 Zadoi, Qinghai Ms 6.2 Earthquake Using InSAR Technology[J]. Geodesy and Geodynamics, 2017, 8(5): 342-346 doi: 10.1016/j.geog.2017.04.008
    [13]
    陈威, 余鹏飞, 熊维, 等. 2016年杂多Ms 6.2地震的InSAR形变及断层滑动模型[J].大地测量与地球动力学, 2018, 38(7): 738-742 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201807016

    Chen Wei, Yu Pengfei, Xiong Wei, et al. The Fault Slip Distribution of ZadoiMs 6.2 Earthquake as Revealed by Sentinel-1A InSAR Data[J]. Journal of Geodesy and Geodynamics, 2018, 38(7): 738-742 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201807016
    [14]
    Jiang G, Wen Y, Li K, et al. A Ne-Trending Oblique-Slip Fault Responsible for the 2016 ZadoiEarthquake (Qinghai, China) Revealed by InSAR Data[J]. Pure and Applied Geophysics, 2018, 175(12): 4 275-4 288 doi: 10.1007/s00024-018-1948-0
    [15]
    姜弘道.弹性力学问题的边界元法[M].北京:中国水利水电出版社, 2008

    Jiang Hongdao. Boundary Element Method for Elastic Problems[M]. Beijing: China Water and Power Press, 2008
    [16]
    吴云, 申重阳, 周硕愚, 等.基于边界元的非连续(块体系统)形变反分析法[J].武汉大学学报⋅信息科学版, 2003, 28(3): 345-350 http://d.wanfangdata.com.cn/Periodical/whchkjdxxb200303018

    Wu Yun, Shen Chongyang, Zhou Shuoyu, et al. An Inversion Method of DDA with BEM[J]. Geomatics and Information Science of Wuhan University, 2003, 28(3): 345-350 http://d.wanfangdata.com.cn/Periodical/whchkjdxxb200303018
    [17]
    Gomberg J, Ellis M. Topography and Tectonics of the Central New Madrid Seismic Zone: Results of Numerical Experiments Using a Three-Dimensional Boundary Element Program[J].Journal of Geophysical Research, 1994, 99(B10): 20 299-20 310 doi: 10.1029/94JB00039
    [18]
    Werner C, Wegmüller U, Strozzi T, et al. Gamma SAR and Interferometric Processing Software[C]. ERS-ENVISAT Symposium, Gothenburg, Sweden, 2000
    [19]
    Scheiber R, Moreira A. Coregistration of Interferometric SAR Images Using Spectral Diversity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2 179-2 191 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ac77a6298bca27285edc53b9b2385580
    [20]
    Farr T G, Rosen P A, Caro E, et al. The Shuttle Radar Topography Mission[J].Reviews of Geophysics, 2007, 45: RG2004 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2005RG000183
    [21]
    Goldstein R M, Werner C L. Radar Interferogram Filtering for Geophysical Applications[J]. Geophysical Research Letters, 1998, 25(21): 4 035-4 038 doi: 10.1029/1998GL900033
    [22]
    Goldstein R, Zebker H, Werner C. Satellite Radar Interferometry: Two-Dimensional Phase Unwrapping[J]. Radio Science, 1988, 23(4): 713-720 doi: 10.1029/RS023i004p00713
    [23]
    Yu C, Penna N T, Li Z. Generation of Real-Time Mode High Resolution Water Vapor Fields from GPS Observations[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(3): 2 008-2 025 doi: 10.1002/2016JD025753
    [24]
    Parsons B, Wright T, Rowe P, et al. The 1994 Sefidabeh (Eastern Iran) Earthquakes Revisited: New Evidence from Satellite Radar Interferometry and Carbonate Dating About the Growth of an Active Fold Above a Blind Thrust Fault[J]. Geophysical Journal International, 2006, 164: 202-217 http://gji.oxfordjournals.org/content/164/1/202.abstract
    [25]
    Jónsson S, Zebker H, Segall P, et al. Fault Slip Distribution of the 1999 Mw 7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4):1 377-1 389 doi: 10.1785/0120000922
    [26]
    Liu Y, Xu C, Wen Y, et al. Fault Rupture Model of the 2008 Dangxiong (Tibet, China) Mw 6.3 Earthquake from Envisat and ALOS Data[J]. Advances in Space Research, 2012, 50(7): 952-962 doi: 10.1016/j.asr.2012.06.006
    [27]
    Okada Y. Surface Deformation Due to Shear and Tensile Faults in a Half-Space[J]. Bulletin of the Seismological Society of America, 1985, 75(4): 1 135-1 154 http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=75/4/1135
    [28]
    刘洋, 许才军, 温扬茂, 等. 2008年大柴旦Mw 6.3级地震的InSAR同震形变观测及断层参数反演[J].测绘学报, 2015, 44(11): 1 202-1 209 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201511006

    Liu Yang, Xu Caijun, Wen Yangmao, et al. The InSAR Coseismic Deformation Observations and Fault Parameter Inversion of the 2008 Dachaidan Mw 6.3 Earthquake[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(11): 1 202-1 209 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201511006
    [29]
    王乐洋, 赵雄, 高华.大地测量地震断层同震滑动分布反演的两步解法[J].武汉大学学报·信息科学版, 2019, 44(9): 1 265-1 273 doi: 10.13203/j.whugis20170382

    Wang Leyang, Zhao Xiong, Gao Hua. A Two-Step Solution Method for the Co-seismic Slip Distribution Inversion of Earthquake Faults in Geodesy[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1 265-1 273 doi: 10.13203/j.whugis20170382
    [30]
    李延兴, 杨国华, 李智, 等.中国大陆活动地块的运动与应变状态[J].中国科学D辑:地球科学, 2003, 33(s1): 65-81 http://www.cqvip.com/QK/98491X/2003B04/7697461.html

    Li Yanxing, Yang Guohua, Li Zhi, et al. Movement and Strain Conditions of Active Blocks in the Chinese Mainland[J]. Science in China Series D: Earth Sciences, 2003, 33(s1): 65-81 http://www.cqvip.com/QK/98491X/2003B04/7697461.html
    [31]
    吴中海, 周春景, 冯卉, 等.青海玉树地区活动断裂与地震[J].地质通报, 2014, 33(4): 419-469 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201404003

    Wu Zhonghai, Zhou Chunjing, Feng Hui, et al. Active Faults and Earthquake Around Yushu in Eastern Tibetan Plateau[J]. Geological Bulletin of China, 2014, 33(4): 419-469 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201404003
  • Related Articles

    [1]ZHOU Fangbin, XIAO Zhiwen, LIU Xuejun, MA Guowei, ZHANG Shanshan. Mountain Peak Extraction of Grid DEM Based on Aspect Distribution Feature[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 419-425. DOI: 10.13203/j.whugis20210479
    [2]BIAN Weiwei, WU Jicang, ZHANG Lei, GAO Yu. Temporal and Spatial Statistical Analysis of Strong Earthquakes and Spatial Distribution Characteristics of InSAR Coseismic Deformation Field[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 875-886. DOI: 10.13203/j.whugis20220176
    [3]WANG Haiqi, CHEN Ran, WEI Shiqing, GUI Li, FEI Tao. Mining Emotional Geography Features Based on Chinese Weibo Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 699-708. DOI: 10.13203/j.whugis20180138
    [4]YANG Jing, CHENG Changxiu, LI Xiaolan, CHEN Chi. A Similarity Evaluation Method on Spatial Patterns of Network Structures: A Case Study About Beijing Traffic-network Backbones from 1938 to 2014[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1593-1598. DOI: 10.13203/j.whugis20140569
    [5]YANG Xiguang, HUANG Haijun, LIU Yanxia, YAN Liwen. Direction Characteristic of Radiation Energy and Transmission Characteristic of Waters at Water-air Surface[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 1003-1008.
    [6]GUO Yangjie, HONG Song, ZHUANG Yanhua, FENG Nan. Temporal Variation and Spatial Distribution of Atmospheric Aerosols over Hubei Province[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11): 1381-1385.
    [7]SUN Jianguo, AI Tinghua, WANG Pei, ZHAO Chuanyan. Assessing Vegetation Degradation Based on NDVI-climate Variables Feature Space[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6): 573-576.
    [8]RUAN Zhimin, SUN Zhenbing. Spatial Information Publication Based on Oracle Spatial and SVG[J]. Geomatics and Information Science of Wuhan University, 2004, 29(2): 161-164.
    [9]LU Anmin, LI Chengming, LIN Zongjian, JIN Yimin. Spatial Distribution of Statistical Population Data[J]. Geomatics and Information Science of Wuhan University, 2002, 27(3): 301-305.
    [10]LU Yi, ZHAI Jingsheng, DU Jinghai, LI Shujun. Recognition,Measurement and Generalization for Point Cluster Features in Digital Nautical Chart[J]. Geomatics and Information Science of Wuhan University, 2001, 26(2): 133-139.
  • Cited by

    Periodical cited type(13)

    1. 戴佩玉,李世忠,季顺平,任妮. 一种基于域自适应泛化增强的云检测方法. 武汉大学学报(信息科学版). 2025(01): 110-119 .
    2. 徐梓川,龚晓峰. 基于语义指导和自适应卷积的遥感云检测算法. 电子测量技术. 2024(01): 136-143 .
    3. 李长萍,于大海,郭豪,李杰,胡滨. 复杂场景下多重损失的步态识别系统的实现. 软件. 2023(05): 11-18 .
    4. 刘广进,王光辉,毕卫华,刘慧杰,杨化超. 基于DenseNet与注意力机制的遥感影像云检测算法. 自然资源遥感. 2022(02): 88-96 .
    5. 黄学飞,梁昌远,郭杰. 融合注意力机制的LandSat8遥感影像云检测算法. 电脑知识与技术. 2022(23): 63-65 .
    6. 黄宇,潘励. 基于显著性图像与纹理特征的遥感影像云检测. 测绘地理信息. 2021(02): 16-19 .
    7. 王亚利,都伟冰,王双亭. 高斯混合模型自动阈值法遥感冰川信息提取. 遥感学报. 2021(07): 1434-1444 .
    8. 王明,刘正佳,陈元琰. 基于Sentinel-2波段/产品的图像云检测效果对比研究. 遥感技术与应用. 2020(05): 1167-1177 .
    9. 刘云峰,杨珍,韩骁,付俊. 国产高分辨率卫星影像云检测方法分析. 测绘通报. 2020(11): 66-70 .
    10. 徐冬宇,厉小润,赵辽英,舒锐,唐琪佳. 基于光谱分析和动态分形维数的高光谱遥感图像云检测. 激光与光电子学进展. 2019(10): 93-101 .
    11. 余长慧,于海威,张文,孟令奎. 神经网络支持下的Sentinel-2卫星影像自动云检测. 测绘通报. 2019(08): 39-43 .
    12. 董志鹏,王密,李德仁,王艳丽,张致齐. 利用对象光谱与纹理实现高分辨率遥感影像云检测方法. 测绘学报. 2018(07): 996-1006 .
    13. 张波,刘鹤飞,王坤. 异分布混合模型及其参数的贝叶斯估计. 曲靖师范学院学报. 2018(06): 1-4 .

    Other cited types(14)

Catalog

    Article views (1329) PDF downloads (190) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return