LUO Zhicai, LIN Xu, ZHOU Boyang. Improved Algorithm of Autocovariance Least-Squares Noise Estimation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10): 1164-1167.
Citation: LUO Zhicai, LIN Xu, ZHOU Boyang. Improved Algorithm of Autocovariance Least-Squares Noise Estimation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10): 1164-1167.

Improved Algorithm of Autocovariance Least-Squares Noise Estimation

Funds: 国家自然科学基金资助项目(41174062,41131067);;中央高校基本科研业务费专项资金资助项目(2012214020206)
More Information
  • Received Date: August 21, 2011
  • Published Date: October 04, 2012
  • Noise estimation is the foundation for the application of Kalman filtering theory.The noise estimation results from the conventional autocovariance least-squares(ALS) are usually non-positive definite.For this purpose,an improved algorithm of ALS(IALS) is proposed to overcome effectively the problems of insufficient data and inaccurate priori information,and consequently to get positive definite noise estimates with better accuracy.Numerical simulation results validate the correctness of IALS.
  • Related Articles

    [1]LIU Shuo, ZHANG Lei, LI Jian. A Modified Wide Lane Bootstrapping Ambiguity Resolution Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 637-642. DOI: 10.13203/j.whugis20150462
    [2]SHU Bao, LIU Hui, ZHANG Jinsheng, PAN Guofu, JIANG Jun. Performance Assessment of Partial Ambiguity Resolution Based on BDS/GPS Combined Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 989-994, 1001. DOI: 10.13203/j.whugis20150017
    [3]LIU Shuai, SUN Fuping, LI Haifeng, LIU Jing, HAO Wanliang. GLONASS Aided Ambiguity Fixing for Kinematic GPS PPP[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1238-1244. DOI: 10.13203/j.whugis20140494
    [4]ZHANG Liang, LV Hanfeng, WU Jie. Sin gle  Epoch Ambiguit y Resolution Success Rates Under Modified Objective  Function Without Prior Baseline Information[J]. Geomatics and Information Science of Wuhan University, 2014, 39(10): 1184-1188.
    [5]LIU Jingnan, DENG Chenlong, TANG Weiming. Review of GNSS Ambiguity Validation Theory[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1009-1016. DOI: 10.13203/j.whugis20140241
    [6]WU Yue, FU Xiaolin, LI Haijun, LIU Jingbin. Application of TCAR/MCAR Method in Different Baseline Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2007, 32(2): 172-175.
    [7]LI Deren, PENG Mingjun, . Transformation Between Urban Spatial Information Irregular Grid and Regular Grid[J]. Geomatics and Information Science of Wuhan University, 2007, 32(2): 160-163.
    [8]WANG Xinzhou, HUA Xianghong, QIU Lei. A New Method for Integer Ambiguity Resolution in GPS Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 24-26.
    [9]REN Chao, OU Jikun, YUAN Yunbin. A New Method for GPS Ambiguity Resolution on-the-Fly Using Integer Whitening Filter Search[J]. Geomatics and Information Science of Wuhan University, 2004, 29(11): 960-963.
    [10]P. J. G. Teunissen. A New Class of GNSS Ambiguity Estimators[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 757-762.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return