Citation: | LU Binbin, GE Yong, QIN Kun, ZHENG Jianghua. A Review on Geographically Weighted Regression[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1356-1366. DOI: 10.13203/j.whugis20190346 |
[1] |
Fotheringham A S, Brunsdon C. Local Forms of Spatial Analysis[J]. Geographical Analysis, 1999, 31(4): 340-358 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1538-4632.1999.tb00989.x
|
[2] |
Goodchild M F. The Validity and Usefulness of Laws in Geographic Information Science and Geography[J]. Annals of the Association of American Geographers, 2004, 94(2): 300-303 doi: 10.1111/j.1467-8306.2004.09402008.x
|
[3] |
Páez A. Local Analysis of Spatial Relationships: A Comparison of GWR and the Expansion Method[C]. The 5th International Conference on Computational Science and Its Applications, Singapore, 2005
|
[4] |
Swamy P A V B, Conway R K, Leblanc M R. The Stochastic Coefficients Approach to Econometric Modeling, Part 1: A Critique of Fixed Coefficients Models[R]. US: Board of Governors of the Federal Reserve System, 1988
|
[5] |
Gamerman D, Moreira A R B, Rue H.Space-Varying Regression Models: Specifications and Simulation[J]. Computational Statistics & Data Analysis, 2003, 42(3): 513-533 http://www.sciencedirect.com/science/article/pii/S0167947302002116
|
[6] |
Cleveland W S. Robust Locally Weighted Regression and Smoothing Scatterplots[J]. Journal of the American Statistical Association, 1979, 74(368): 829-836 doi: 10.1080/01621459.1979.10481038
|
[7] |
Brunsdon C, Fotheringham A S, Charlton M E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity[J]. Geographical Analysis, 1996, 28(4): 281-298
|
[8] |
Páez A, Wheeler D. Geographically Weighted Regression[M]// Kitchin R, Thrift N. International Encyclopedia of Human Geography.Oxford: Elsevier, 2009: 407-414
|
[9] |
Aria M, Cuccurullo C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis[J]. Journal of Informetrics, 2017, 11(4): 959-975 doi: 10.1016/j.joi.2017.08.007
|
[10] |
玄海燕, 李琪, 张运虎.基于地理加权回归的我国各市人口总数的空间特征分析[J].生物数学学报, 2016, 31(2): 223-228 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swsxxb201602009
Xuan Haiyan, Li Qi, Zhang Yunhu. Spatial Characteristics Analysis of Total Population in Various Cities Based on Geographically Weighted Regression[J]. Journal of Biomathematic, 2016, 31(2): 223-228 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swsxxb201602009
|
[11] |
赵阳阳, 刘纪平, 张福浩, 等.贪心算法的地理加权回归特征变量选择方法[J].测绘科学, 2016, 41(7): 41-46 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chkx201607009
Zhao Yangyang, Liu Jiping, Zhang Fuhao, et al.An Approach of Characteristics Variable Selection of Geographically Weighted Regression Based on Greedy Algorithm[J]. Science of Surveying and Mapping, 2016, 41(7): 41-46 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chkx201607009
|
[12] |
Tobler W R. A Computer Movie Simulating Urban Growth in the Detroit Region[J]. Economic Geography, 1970, 46(2): 234-240 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.2307/143141
|
[13] |
Fotheringham A S, Brunsdon C, Charlton M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships[M]. Chichester: Wiley, 2002
|
[14] |
Cho S H, Lambert D M, Chen Z. Geographically Weighted Regression Bandwidth Selection and Spatial Autocorrelation: An Empirical Example Using Chinese Agriculture Data[J]. Applied Economics Letters, 2010, 17(8): 767 - 772 doi: 10.1080/13504850802314452
|
[15] |
Cameron A C, Trivedi P K. Microeconometrics: Methods and Applications[M]. New York: Cambridge University Press, 2005
|
[16] |
Farber S, Páez A. A Systematic Investigation of Cross-Validation in GWR Model Estimation:Empirical Analysis and Monte Carlo Simulations[J]. Journal of Geographical Systems, 2007, 9(4): 371-396 doi: 10.1007/s10109-007-0051-3
|
[17] |
Akaike H. Information Theory and an Extension of the Maximum Likelihood Principle[C]. 2nd International Symposium on Information Theory. Tsahkadsor, Armenia, 1973
|
[18] |
Mennis J. Mapping the Results of Geographically Weighted Regression[J]. The Cartographic Journal, 2006, 43(2): 171-179 doi: 10.1179/000870406X114658
|
[19] |
Leung Y, Mei C L, Zhang W X. Testing for Spatial Autocorrelation Among the Residuals of the Geographically Weighted Regression[J]. Environment and Planning A, 2000, 32(5): 871-890 doi: 10.1068/a32117
|
[20] |
Leung Y, Mei C L, Zhang W X. Statistical Tests for Spatial Nonstationarity Based on the Geographically Weighted Regression Model[J]. Environment and Planning A, 2000, 32(1): 9-32 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1068/a3162
|
[21] |
Comber A, Chi K, Huy M Q, et al. Distance Metric Choice Can Both Reduce and Induce Collinearity in Geographically Weighted Regression[J]. Environment and Planning B: Urban Analytics and City Science, 2018, DOI: 10.1177/2399808318784017
|
[22] |
Griffith D A. Spatial-Filtering-Based Contributions to a Critique of Geographically Weighted Regression (GWR)[J]. Environment and Planning A, 2008, 40(11): 2 751-2 769 doi: 10.1068/a38218
|
[23] |
Wheeler D, Tiefelsdorf M. Multicollinearity and Correlation Among Local Regression Coefficients in Geographically Weighted Regression[J]. Journal of Geographical Systems, 2005, 7(2): 161-187 doi: 10.1007/s10109-005-0155-6
|
[24] |
Wheeler D C. Simultaneous Coefficient Penalization and Model Selection in Geographically Weighted Regression: The Geographically Weighted Lasso[J]. Environment and Planning A, 2009, 41(3): 722-742
|
[25] |
Wheeler D C. Diagnostic Tools and a Remedial Method for Collinearity in Geographically Weighted Regression[J]. Environment and Planning A, 2007, 39(10): 2 464-2 481 doi: 10.1068/a38325
|
[26] |
Gollini I, Lu B, Charlton M, et al. GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models[J]. Journal of Statistical Software, 2015, 63(17): 1-50 http://www.researchgate.net/publication/237000443_GWmodel_an_R_Package_for_Exploring_Spatial_Heterogeneity_using_Geographically_Weighted_Models
|
[27] |
Fotheringham A S, Oshan T M. Geographically Weighted Regression and Multicollinearity: Dispelling the Myth[J]. Journal of Geographical Systems, 2016, 18(4): 303-329 doi: 10.1007/s10109-016-0239-5
|
[28] |
Jetz W, Rahbek C, Lichstein J W. Local and Global Approaches to Spatial Data Analysis in Ecology[J]. Global Ecology and Biogeography, 2005, 14(1): 97-98 doi: 10.1111/j.1466-822X.2004.00129.x
|
[29] |
Wheeler D C, Páez A: Geographically Weighted Regression[M]. Fischer M M, Getis A. Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications. Berlin, Heidelberg: Springer-Verlag, 2010: 461-486
|
[30] |
Da Silva A R, Fotheringham A S. The Multiple Testing Issue in Geographically Weighted Regression[J]. Geographical Analysis, 2016, 48(3): 233-247 doi: 10.1111/gean.12084
|
[31] |
Byrne G, Charlton M, Fotheringham S. Multiple Dependent Hypothesis Tests in Geographically Weighted Regression[C]. The 10th International Conference on Geocomputation, Sydney, Australia, 2009
|
[32] |
Kitchin R. Space Ⅱ[M]//Kitchin R, Thrift N. International Encyclopedia of Human Geography. Oxford: Elsevier, 2009: 268-275
|
[33] |
Lu B, Charlton M, Harris P, et al. Geographically Weighted Regression with a Non-Euclidean Distance Metric: A Case Study Using Hedonic House Price Data[J]. International Journal of Geographical Information Science, 2014, 28(4): 660-681 doi: 10.1080/13658816.2013.865739
|
[34] |
Lu B, Charlton M, Brunsdon C, et al. The Minkowski Approach for Choosing the Distance Metric in Geographically Weighted Regression[J]. International Journal of Geographical Information Science, 2016, 30(2): 351-368 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/13658816.2015.1087001
|
[35] |
Fotheringham A S, Yang W, Kang W. Multiscale Geographically Weighted Regression (MGWR)[J]. Annals of the American Association of Geographers, 2017, 107(6): 1 247-1 265 doi: 10.1080/24694452.2017.1352480
|
[36] |
Lu B, Brunsdon C, Charlton M, et al. A Response to 'A Comment on Geographically Weighted Regression with Parameter-Specific Distance Metrics'[J]. International Journal of Geographical Information Science, 2019, 33(7): 1 300-1 312 doi: 10.1080/13658816.2019.1585541
|
[37] |
Brunsdon C, Fotheringham A S, Charlton M. Some Notes on Parametric Significance Tests for Geographically Weighted Regression[J]. Journal of Regional Science, 1999, 39(3): 497-524 doi: 10.1111/0022-4146.00146
|
[38] |
覃文忠, 王建梅, 刘妙龙.混合地理加权回归模型算法研究[J].武汉大学学报·信息科学版, 2007, 32(2): 115-119 http://ch.whu.edu.cn/article/id/1813
Qin Wenzhong, Wang Jianmei, Liu Miaolong. Algorithm for Mixed Geographically Weighted Regression Mode[J]. Geomatics and Information Science of Wuhan University, 2007, 32(2): 115-119 http://ch.whu.edu.cn/article/id/1813
|
[39] |
玄海燕, 刘树群, 罗双华.混合地理加权回归模型的两种估计[J].兰州理工大学学报, 2007, 33(3): 142-144 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gsgydx200703038
Xuan Haiyan, Liu Shuqun, Luo Shuanghua. Two Kinds of Estimation of Mixed Geographically Weighted Regression Mode[J]. Journal of Lanzhou University of Technology, 2007, 33(3): 142-144 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gsgydx200703038
|
[40] |
聂磊, 舒红, 刘艳.复杂地形地区月平均气温(混合)地理加权回归克里格插值[J].武汉大学学报·信息科学版, 2018, 43(10):1 553-1 559 doi: 10.13203/j.whugis20160433
Nie Lei, Shu Hong, Liu Yan. Interpolation of Monthly Average Temperature by Using (Mixed) Geographically Weighted Regression Kriging in the Complex Terrain Region[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10):1 553-1 559 doi: 10.13203/j.whugis20160433
|
[41] |
Mei C L, Xu M, Wang N. A Bootstrap Test for Constant Coefficients in Geographically Weighted Regression Models[J]. International Journal of Geographical Information Science, 2016, 30(8): 1 622-1 643 doi: 10.1080/13658816.2016.1149181
|
[42] |
Mei C L, Wang N, Zhang W X. Testing the Importance of the Explanatory Variables in a Mixed Geographically Weighted Regression Model[J]. Environment and Planning A, 2006, 38(3): 587-598 doi: 10.1068/a3768
|
[43] |
Harris P, Brunsdon C, Lu B, et al. Introducing Bootstrap Methods to Investigate Coefficient Non-stationarity in Spatial Regression Models[J]. Spatial Statistics, 2017, 21: 241-261 doi: 10.1016/j.spasta.2017.07.006
|
[44] |
Yang W, Fotheringham A S, Harris P. An Extension of Geographically Weighted Regression with Flexible Bandwidths[C]. GISRUK, Lancaster, UK, 2012
|
[45] |
Yang W. An Extension of Geographically Weighted Regression with Flexible Bandwidths[D]. UK: Centre for GeoInformatics, University of St Andrews, 2014
|
[46] |
Leong Y Y, Yue J C. A Modification to Geographically Weighted Regression[J]. International Journal of Health Geographics, 2017, 16(1): 11 doi: 10.1186/s12942-017-0085-9
|
[47] |
Lu B, Brunsdon C, Charlton M, et al. Geographically Weighted Regression with Parameter-Specific Distance Metrics[J]. International Journal of Geographical Information Science, 2017, 31(5): 982-998 doi: 10.1080/13658816.2016.1263731
|
[48] |
Lu B, Yang W, Ge Y, et al. Improvements to the Calibration of a Geographically Weighted Regression with Parameter-Specific Distance Metrics and Bandwidths[J]. Computers, Environment and Urban Systems, 2018, 71: 41-57 doi: 10.1016/j.compenvurbsys.2018.03.012
|
[49] |
Ge Y, Jin Y, Stein A, et al. Principles and Methods of Scaling Geospatial Earth Science Data[J]. Earth-Science Reviews, 2019, 197: 102 897 doi: 10.1016/j.earscirev.2019.102897
|
[50] |
Wolf L, Oshan T, Fotheringham A. Single and Multiscale Models of Process Spatial Heterogeneity[J]. Geographical Analysis, 2018, 50(3): 223-246 doi: 10.1111/gean.12147
|
[51] |
Yu H, Fotheringham A S, Li Z, et al. Inference in Multiscale Geographically Weighted Regression[J]. Geographical Analysis, 2020, 52(1): 87-106 doi: 10.1111/gean.12189
|
[52] |
Wu C, Ren F, Hu W, et al. Multiscale Geographically and Temporally Weighted Regression: Exploring the Spatiotemporal Determinants of Housing Prices[J]. International Journal of Geographical Information Science, 2019, 33(3): 489-511 doi: 10.1080/13658816.2018.1545158
|
[53] |
Huang B, Wu B, Barry M. Geographically and Temporally Weighted Regression for Modeling Spatio-Temporal Variation in House Prices[J]. International Journal of Geographical Information Science, 2010, 24(3): 383-401 doi: 10.1080/13658810802672469
|
[54] |
Fotheringham A S, Crespo R, Yao J. Geographical and Temporal Weighted Regression (GTWR)[J]. Geographical Analysis, 2015, 47(4): 431-452 doi: 10.1111/gean.12071
|
[55] |
Wu B, Li R, Huang B. A Geographically and Temporally Weighted Autoregressive Model with Application to Housing Prices[J]. International Journal of Geographical Information Science, 2014, 28(5): 1 186-1 204 doi: 10.1080/13658816.2013.878463
|
[56] |
Du Z, Wu S, Zhang F, et al. Extending Geographically and Temporally Weighted Regression to Account for Both Spatiotemporal Heterogeneity and Seasonal Variations in Coastal Seas[J]. Ecological Informatics, 2018, 43: 185-199 doi: 10.1016/j.ecoinf.2017.12.005
|
[57] |
赵阳阳, 张小璐, 张福浩, 等.一种局部多项式时空地理加权回归方法[J].测绘学报, 2018, 47(5): 663-671 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201805013
Zhao Yangyang, Zhang Xiaolu, Zhang Fuhao, et al. A Local Polynomial Geographically and Temporally Weight Regression[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5): 663-671 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201805013
|
[58] |
Liu Y, Lam K, Wu J, et al. Geographically Weighted Temporally Correlated Logistic Regression Model[J]. Scientific Reports, 2018, 8(1): 1 417 doi: 10.1038/s41598-018-19772-6
|
[59] |
Lesage J P. A Family of Geographically Weighted Regression Models[M]//Anselin L, Florax R J, Rey S J. Advances in Spatial Econometrics. Berlin, Heidelberg: Springer, 2002
|
[60] |
Harris P, Fotheringham A S, Juggins S. Robust Geographically Weighted Regression: A Technique for Quantifying Spatial Relationships Between Freshwater Acidification Critical Loads and Catchment Attributes[J]. Annals of the Association of American Geographers, 2010, 100(2): 286-306 doi: 10.1080/00045600903550378
|
[61] |
Wang N, Mei C L, Yan X D. Local Linear Estimation of Spatially Varying Coefficient Models: An Improvement on the Geographically Weighted Regression Technique[J]. Environment and Planning A, 2008, 40(4): 986-1 005 doi: 10.1068/a3941
|
[62] |
Harris P, Juggins S. Estimating Freshwater Acidification Critical Load Exceedance Data for Great Britain Using Space-Varying Relationship Models[J]. Mathematical Geosciences, 2011, 43(3): 265-292 doi: 10.1007/s11004-011-9331-z
|
[63] |
Nakaya T, Fotheringham A S, Brunsdon C, et al. Geographically Weighted Poisson Regression for Disease Association Mapping[J]. Statistics in Medicine, 2005, 24(17): 2 695-2 717 doi: 10.1002/sim.2129
|
[64] |
Atkinson P M, German S E, Sear D A, et al. Exploring the Relations Between Riverbank Erosion and Geomorphological Controls Using Geographically Weighted Logistic Regression[J]. Geographical Analysis, 2003, 35(1): 58-82 doi: 10.1111/j.1538-4632.2003.tb01101.x
|
[65] |
Harris R, Singleton A, Grose D, et al. Grid-Enabling Geographically Weighted Regression: A Case Study of Participation in Higher Education in England[J]. Transactions in GIS, 2010, 14(1): 43-61 doi: 10.1111/j.1467-9671.2009.01181.x
|
[66] |
Dong G, Nakaya T, Brunsdon C. Geographically Weighted Regression Models for Ordinal Categorical Response Variables:An Application to Geo-referenced Life Satisfaction Data[J]. Computers, Environment and Urban Systems, 2018, 70: 35-42 doi: 10.1016/j.compenvurbsys.2018.01.012
|
[67] |
Li Z, Fotheringham A S, Li W, et al. Fast Geographically Weighted Regression (FastGWR): A Scalable Algorithm to Investigate Spatial Process Heterogeneity in Millions of Observations[J]. International Journal of Geographical Information Science, 2019, 33(1): 155-175
|
[68] |
Murakami D, Tsutsumida N, Yoshida T, et al. Scalable GWR: A Linear-Time Algorithm for Large-Scale Geographically Weighted Regression with Polynomial Kernels[OL]. https://arxiv.org/abs/1905.00266, 2019
|
[69] |
Harris P.A Simulation Study on Specifying a Regression Model for Spatial Data: Choosing Between Autocorrelation and Heterogeneity Effects[J]. Geographical Analysis, 2019, 51(2): 151-181 doi: 10.1111/gean.12163
|
[70] |
Charlton M, Fotheringham A, Brunsdon C. GWR 3: Software for Geographically Weighted Regression[OL]. http://www.uvm.edu/rsenr/gradgis/GWR3Manual.pdf, 2003
|
[71] |
Nakaya T, Charlton M, Fotheringham S, et al. How to Use SGWRWIN (GWR4.0)[R]. Ireland: National Centre for Geocomputation, 2009
|
[72] |
Oshan M T, Li Z, Kang W, et al. MGWR: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale[J]. ISPRS International Journal of Geo-Information, 2019, 8(6): 1-31 http://www.researchgate.net/publication/333694051_MGWR_A_Python_Implementation_of_Multiscale_Geographically_Weighted_Regression_for_Investigating_Process_Spatial_Heterogeneity_and_Scale
|
[73] |
Lu B, Harris P, Charlton M, et al. The GWmodel R Package: Further Topics for Exploring Spatial Heterogeneity Using Geographically Weighted Models[J]. Geo-Spatial Information Science, 2014, 17(2): 85-101 http://d.wanfangdata.com.cn/periodical/dqkjxxkxxb-e201402002
|
[74] |
Eddelbuettel D, Francois R. Rcpp: Seamless R and C++ Integration[J]. Journal of Statistical Software, 2011, 1(8): 1-19 http://www.researchgate.net/publication/227450960_Rcpp_Seamless_R_and_C_Integration
|
[75] |
Wheeler D. GWRR: Fits Geographically Weighted Regression Models with Diagnostic Tools: R Package Version 0.2-1[OL]. https://CRAN.R-project.org/package=gwrr, 2013
|
[1] | WANG Yanli, DONG Zhipeng, WANG Mi. Ulva polifera Detection from High Resolution Remote Sensing Images Based on Dual-Path Convolutional Neural Networks[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2261-2270. DOI: 10.13203/j.whugis20230159 |
[2] | TANG Xiaochuan, TU Zihan, REN Xuqing, FANG Chengyong, WANG Yu, LIU Xin, FAN Xuanmei. A Multi-modal Deep Neural Network Model for Forested Landslide Detection[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1566-1573. DOI: 10.13203/j.whugis20230099 |
[3] | ZHANG Li, DONG Youfu, LI Ming. ASTER GDEM and SRTM1 Elevation Data Integration with RProp Neural Network[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5): 777-783. DOI: 10.13203/j.whugis20200679 |
[4] | TAO Liqing, HUANG Guoman, YANG Shucheng, WANG Tongtong, SHENG Huijun, FAN Haitao. A Interferogram Denoising Method Based on Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 559-567. DOI: 10.13203/j.whugis20200589 |
[5] | GUO Congzhou, LI Ke, LI He, TONG Xiaochong, WANG Xiwen. Deep Convolution Neural Network Method for Remote Sensing Image Quality Level Classification[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1279-1286. DOI: 10.13203/j.whugis20200292 |
[6] | REN Jiaxin, LIU Wanzeng, LI Zhilin, LI Ran, ZHAI Xi. Intelligent Detection of "Problematic Map" Using Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 570-577. DOI: 10.13203/j.whugis20190259 |
[7] | ZHAO Xianghong, BAO Jingyang, OUYANG Yongzhong, HUANG Xianyuan, HUANG Chenhu, LU Xiuping. Detecting Outlier of Multibeam Sounding with BP Neural Network[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 518-524. DOI: 10.13203/j.whugis20160336 |
[8] | SUN Deyong, LI Yunmei, WANG Qiao, LE Chengfeng. Remote Sensing Retrieval of CDOM Concentration in Lake Taihu with Hyper-spectral Data and Neural Network Model[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 851-855. |
[9] | WANG Jianmei, QIN Wenzhong. BP Neural Network Classifier Based on Levenberg-Marquardt Algorithm[J]. Geomatics and Information Science of Wuhan University, 2005, 30(10): 928-931. |
[10] | Huang Wenqian. Recognition of Point-shaped Map Symbols with a New Neural Network Model[J]. Geomatics and Information Science of Wuhan University, 1996, 21(1): 46-49. |