ZHAO Qingzhi, YAO Yibin, XIN Linyang. A Method to Sophisticate the Water Vapor Tomography Model by Combining the ECMWF Grid Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1131-1138. DOI: 10.13203/j.whugis20190323
Citation: ZHAO Qingzhi, YAO Yibin, XIN Linyang. A Method to Sophisticate the Water Vapor Tomography Model by Combining the ECMWF Grid Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1131-1138. DOI: 10.13203/j.whugis20190323

A Method to Sophisticate the Water Vapor Tomography Model by Combining the ECMWF Grid Data

Funds: 

The China Postdoctoral Science Foundation Program 2020M673442

the National Natural Science Foundation of China 41904036

the Natural Science Basic Research Plan in Shaanxi Province of China 2020JQ-738

More Information
  • Author Bio:

    ZHAO Qingzhi, PhD, associate professor, specializes in GNSS water vapor inversion.E-mail: zhaoqingzhia@163.com

  • Received Date: August 04, 2020
  • Published Date: August 04, 2021
  •   Objectives  GNSS tomography technique is one of the most important methods to obtain the three-dimensional water vapor information. However, due to lack of enough initial prior information in the process of building the tomography model, the design matrix of tomography model is unstable and the tomographic result is poor, which has become an urgent problem to be resolved.
      Methods  First of all, the grid data derived from European Center for Medium-Range Weather Forecasting (ECMWF) is used to calculate the initial value of water vapor density in every voxel of interest area. And then, sophisticating the traditional tomography modeling using the calculated initial water vapor values. Finally, the influence of weightings of different equations in tomography model on tomographic result is also considered.
      Results  Comparing to the traditional methods, the proposed approach can enhance the accuracy of tomographic result by 41.2%, and its root mean squared error (RMSE) decreases from 1.82 g/m3 to 1.07 g/m3. Additionally, the mean absolute error (MAE), Bias and standard deviation (STD) also show a better performance than those of the traditional methods.
      Conclusions  The purpose is to improve the accuracy of tomographic water vapor profiles and used to sophisticate the established tomography model.
  • [1]
    黄勇, 翟菁, 邱学兴. 淮河流域一次强对流性天气过程的遥感观测分析[J]. 气象与环境学报, 2013, 29(2): 19-26 doi: 10.3969/j.issn.1673-503X.2013.02.004

    Huang Yong, Zhai Jing, Qiu Xuexing. Analysis of a Convective Weather Process Based on Remote Sensing Data in the Huaihe River Basin[J]. Journal of Meteorology and Environment, 2013, 29(2): 19-26 doi: 10.3969/j.issn.1673-503X.2013.02.004
    [2]
    Rocken C, Ware R, Van Hove T, et al. Sensing Atmospheric Water Vapor with the Global Positioning System[J]. Geophysical Research Letters, 1993, 20(23): 2 631-2 634 doi: 10.1029/93GL02935
    [3]
    Bevis M, Businger S, Herring T A, et al. GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System[J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D14): 15 787-15 801 doi: 10.1029/92JD01517
    [4]
    Flores A, Ruffini G, Rius A. 4D Tropospheric Tomography Using GPS Slant Wet Delays[J]. Annales Geophysicae, 2000, 18(2): 223-234 doi: 10.1007/s00585-000-0223-7
    [5]
    Troller M, Burki B, Cocard M, et al. 3‐D Refractivity Field from GPS Double Difference Tomography[J]. Geophysical Research Letters, 2002, 29(24), DOI: 10.1029/2002GL015982
    [6]
    Perler D, Geiger A, Hurter F. 4D GPS Water Vapor Tomography: New Parameterized Approaches[J]. Journal of Geodesy, 2011, 85(8): 539-550 doi: 10.1007/s00190-011-0454-2
    [7]
    Chen Biyan, Liu Zhizhao. Voxel-Optimized Regional Water Vapor Tomography and Comparison with Radiosonde and Numerical Weather Model[J]. Journal of Geodesy, 2014, 88(7): 691-703 doi: 10.1007/s00190-014-0715-y
    [8]
    Braun J, Rocken C, Meertens C, et al. Development of a Water Vapor Tomography System Using Low Cost L1 GPS Receivers[C]. The 9th ARM Science Team Meeting Proceedings, San Antonio, Texas, USA, 1999
    [9]
    Yao Yibin, Zhao Qingzhi. Novel, Optimized Approach of Voxel Division for Water Vapor Tomography[J]. Meteorology and Atmospheric Physics, 2017, 129(1): 57-70 doi: 10.1007/s00703-016-0450-4
    [10]
    Yao Yibin, Zhao Qingzhi. Maximally Using GPS Observation for Water Vapor Tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7 185-7 196 doi: 10.1109/TGRS.2016.2597241
    [11]
    Zhao Qingzhi, Yao Yibin, Yao Wanqiang. A Troposphere Tomography Method Considering the Weighting of Input Information[J]. Annales Geophysicae, 2017, 35(6): 1 327-1 340 doi: 10.5194/angeo-35-1327-2017
    [12]
    Zhao Qingzhi, Yao Yibin, Cao Xinyun, et al. An Optimal Tropospheric Tomography Method Based on the Multi-GNSS Observations[J]. Remote Sensing, 2018, 10(2): 234 doi: 10.3390/rs10020234
    [13]
    Bender M, Raabe A. Preconditions to Ground Based GPS Water Vapour Tomography[J]. Annales Geophysicae, 2007, 25(8): 1 727-1 734 doi: 10.5194/angeo-25-1727-2007
    [14]
    Rohm W, Bosy J. Local Tomography Troposphere Model over Mountains Area[J]. Atmospheric Research, 2009, 93(4): 777-783 doi: 10.1016/j.atmosres.2009.03.013
    [15]
    夏朋飞, 蔡昌盛, 戴吾蛟, 等. 地基GPS联合COSMIC掩星数据的水汽三维层析研究[J]. 武汉大学学报·信息科学版, 2013, 38(8): 892-896 http://ch.whu.edu.cn/article/id/2724

    Xia Pengfei, Cai Changsheng, Dai Wujiao, et al. Three-Dimensional Water Vapor Tomography Using Ground-Based GPS and COSMIC Occultation Observations[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 892-896 http://ch.whu.edu.cn/article/id/2724
    [16]
    Bender M, Dick G, Ge M, et al. Development of a GNSS Water Vapor Tomography System Using Algebraic Reconstruction Techniques[J]. Advances in Space Research, 2011, 47(10): 1 704-1 720 doi: 10.1016/j.asr.2010.05.034
    [17]
    Song Shuli, Zhu Wenyao, Ding Jincai. Shanghai GPS Network Tomography Vapor Three-Dimensional Distribution to Improve Numerical Forecast Humidity Field[J]. Journal of China Sci Bulletin, 2005, 50(20): 2 271-2 277 doi: 10.1360/csb2005-50-20-2271
    [18]
    Elosegui P, Ruis A, Davis J L, et al. An Experiment for Estimation of the Spatial and Temporal Variations of Water Vapor Using GPS Data[J]. Physics and Chemistry of the Earth, 1998, 23(1): 125-130 doi: 10.1016/S0079-1946(97)00254-1
    [19]
    Guo Jiming, Yang Fei, Shi Junbo, et al. An Optimal Weighting Method of Global Positioning System (GPS) Troposphere Tomography[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(12): 5 880-5 887 doi: 10.1109/JSTARS.2016.2546316
    [20]
    Perera G, Carrasco H, Díaz V, et al. Mathematical Statistics: On the Hartley‐Bartlett Test[J]. International Journal of Mathematical Education in Science and Technology, 1996, 27(4): 553-559 doi: 10.1080/0020739960270409
    [21]
    Mendes V B. Modeling the Neutral-Atmospheric Propagation Delay in Radiometric Space Techniques[D]. Fredericton, New Brunswick, Canada: University of New Brunswick, 1999
    [22]
    Rocken C, Hove T V, Johnson J, et al. GPS/STORM-GPS Sensing of Atmospheric Water Vapor for Meteorology[J]. Journal of Atmospheric and Oceanic Technology, 1995, 12(3): 468-478 doi: 10.1175/1520-0426(1995)012<0468:GSOAWV>2.0.CO;2
    [23]
    Saastamoinen J. Contributions to the Theory of Atmospheric Refraction[J]. Bulletin Geodesique, 1972, 105 (1): 279-298 doi: 10.1007/BF02521844
    [24]
    Niell A E, Coster A J, Solheim F S, et al. Comparison of Measurements of Atmospheric Wet Delay by Radiosonde, Water Vapor Radiometer, GPS, and VLBI[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(6): 830-850 doi: 10.1175/1520-0426(2001)018<0830:COMOAW>2.0.CO;2
    [25]
    Adeyemi B, Joerg S. Analysis of Water Vapor over Nigeria Using Radiosonde and Satellite Data[J]. Journal of Applied Meteorology and Climatology, 2012, 51(10): 1 855-1 866 doi: 10.1175/JAMC-D-11-0119.1
  • Related Articles

    [1]YU Daocheng, HWANG Jinway, ZHU Huizhong, LUO Jia, YUAN Jiajia. Enhancing Marine Gravity Field Precision Using SWOT Wideswath Altimetry Data: a Comparative Analysis with Traditional Altimetry Satellites[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240120
    [2]HE Huiyou, FANG Jian. Gravity Anomaly Spectrum Analysis Method and Its Application[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2092-2102. DOI: 10.13203/j.whugis20200510
    [3]XING Zhibin, LI Shanshan, WANG Wei, FAN Haopeng. Fast Approach to Constructing Normal Equation During the Time of Calculating Height Anomaly Difference by Using Vertical Deflections[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 778-783. DOI: 10.13203/j.whugis20140491
    [4]DU Jinsong, CHEN Chao, LIANG Qing, ZHANG Yi. Lunar Gravity Anomaly and Its Computational Method[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1369-1373.
    [5]LI Zhenhai, LUO Zhicai, WANG Haihong, ZHONG Bo. Requirements for Gravity Data Within the Given Accuracy of the Interpolated Gravity Anomaly[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1328-1331.
    [6]WU Yunsun, CHAO Dingbo, LI Jiancheng, WANG Zhengtao. Recovery of Ocean Depth Model of South China Sea from Altimetric Gravity Gradient Anomalies[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1423-1425.
    [7]WANG Haihong, NING Jinsheng, LUO Zhicai, LUO Jia. Separation of Gravity Anomalies Based on Multiscale Edges[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 109-112.
    [8]CHAO Dingbo, YAO Yunsheng, LI Jiancheng, XU Jusheng. Interpretaion on the Tectonics and Characteristics of Altimeter-derived Gravity Anomalies in China South Sea[J]. Geomatics and Information Science of Wuhan University, 2002, 27(4): 343-347.
    [9]Huang Motao, Guan Zheng, Ouyang Yongzhong. Calculation and Accuracy Estimation of Marine Mean Free-Air Gravity Anomaly[J]. Geomatics and Information Science of Wuhan University, 1995, 20(4): 327-331.
    [10]Guan Zelin, E Dongchen. The Computation of Geoidal Undulation Deflection of Vertical and Gravity Anomalies Using Clenshaw Summation[J]. Geomatics and Information Science of Wuhan University, 1986, 11(4): 75-82.
  • Cited by

    Periodical cited type(10)

    1. 费婷婷,丁晓婷,阙翔,林津,林健,王紫薇,刘金福. 基于SBM-DEA与STWR模型的中国能源碳排放效率时空异质性分析. 环境工程. 2024(10): 188-200 .
    2. 熊景华,郭生练,王俊,尹家波,李娜. 长江流域陆地水储量变化及归因研究. 武汉大学学报(信息科学版). 2024(12): 2241-2248 .
    3. 姜栋,赵文吉,王艳慧,万碧玉. 地理加权回归的城市道路时空运行态势空间网格计算方法. 武汉大学学报(信息科学版). 2023(06): 988-996 .
    4. 倪杰,吴通华,赵林,李韧,谢昌卫,吴晓东,朱小凡,杜宜臻,杨成,郝君明. 环北极多年冻土区碳循环研究进展与展望. 冰川冻土. 2019(04): 845-857 .
    5. 刘大元,张雪梅,岳跃民,王克林,邹冬生. 基于Geodetector的广西喀斯特植被覆盖变化及其影响因素分析. 农业现代化研究. 2019(06): 1038-1047 .
    6. 肖屹,何宗宜,苗静,潘峰,杨好. 利用搜索引擎数据模拟疾病空间分布. 测绘通报. 2018(02): 94-98 .
    7. 苗月鲜,方秀琴,吴小君,吴陶樱. 基于GWR模型的江西省山洪灾害区域异同性研究. 水土保持通报. 2018(01): 313-318+327 .
    8. 陈吕凤,朱国平. 基于地理加权模型的南设得兰群岛北部南极磷虾渔场空间分布影响分析. 应用生态学报. 2018(03): 938-944 .
    9. 张雪梅,王克林,岳跃民,童晓伟,廖楚杰,张明阳,姜岩. 生态工程背景下西南喀斯特植被变化主导因素及其空间非平稳性. 生态学报. 2017(12): 4008-4018 .
    10. 陈广威,陈吕凤,朱国平,徐玉成,田靖寰,丁博. 南乔治亚岛冬季南极磷虾渔场时空分布及其驱动因子. 生态学杂志. 2017(10): 2803-2810 .

    Other cited types(10)

Catalog

    Article views PDF downloads Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return