WU Guanbin, CHEN Junping, BAI Tianyang, WU Xiaomeng, HU Jinlin. Wide-Area Between-Satellite Single-Difference VTEC Ionospheric Model and Its Assessment for Undifferenced and Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 928-937. DOI: 10.13203/j.whugis20190319
Citation: WU Guanbin, CHEN Junping, BAI Tianyang, WU Xiaomeng, HU Jinlin. Wide-Area Between-Satellite Single-Difference VTEC Ionospheric Model and Its Assessment for Undifferenced and Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 928-937. DOI: 10.13203/j.whugis20190319

Wide-Area Between-Satellite Single-Difference VTEC Ionospheric Model and Its Assessment for Undifferenced and Uncombined PPP

Funds: 

The Key Research and Development Program of Guangdong Province 2018B030325001

the National Key Research and Development Program of China 2018YFB0504300

the National Natural Science Foundation of China 11673050

More Information
  • Author Bio:

    WU Guanbin, postgraduate, specializes in precise point positioning. E-mail: wuguanbin@shao.ac.cn

  • Corresponding author:

    CHEN Junping, PhD, professor. E-mail: junping@shao.ac.cn

  • Received Date: August 08, 2020
  • Published Date: June 04, 2021
  •   Objectives  High-precision ionospheric correction is an important prerequisite for undifferenced and uncombined precise point positioning (PPP) with fast convergence capability. Different from the traditional use of pseudoranges to extract ionospheric information, the ionospheric accuracy obtained by PPP with fixed ambiguity is higher.
      Methods  A wide-area vertical total electron content(VTEC) ionospheric model is developed based on a reference network, where the VTEC of each station is extracted from the undifferenced and uncombined PPP approach. The proposed VTEC model is expressed in the between-satellite single-differenced polynomial function of the sites' latitude and solar hour angle. A data processing procedure and software system are developed for both processing server and user PPP client. In the server part, the VTEC ionospheric delay of the whole network is estimated, the VTEC polynomial function is established and the model parameters are broadcasted to the PPP clients. In the user PPP client, real-time positioning using the broadcasted wide-area VTEC parameters are performed.
      Results  Experiments using the GNSS network in the European region are performed, and results show that the internal RMSE(root mean squared error)and external RMSE of the derived VTEC model is around 3 TECus and 1 TECu for the GLONASS(global navigation satellite system) and GPS, respectively. User kinematic PPP test results using the new VTEC ionospheric model show that, 78 of the whole 136 (57.35%) kinematic undifferenced and uncombined PPP hourly samples converge in 5 minutes, where for 97 samples (71.32%) converge in 10 minutes, 122 samples(89.7%)converge in 15 minutes and 132 samples(97.06%)converge without 25 minutes. In the unconstrained PPP experiment, the results in the above convergence time are 15 (11.03%), 64 (47.06%), 91 (66.91%), and 110 (80.88%), respectively.
      Conclusions  Experiments show that single-difference VTEC ionospheric model has a huge improvement in the accuracy of extracting the ionosphere and shortening the real-time PPP convergence time in a wide-area.
  • [1]
    张小红, 李星星, 郭斐, 等. GPS单频精密单点定位软件实现与精度分析[J]. 武汉大学学报·信息科学版, 2008, 33(8): 783-787 http://ch.whu.edu.cn/article/id/1678

    Zhang Xiaohong, Li Xingxing, Guo Fei, et al. Realization and Precision Analysis of Single-Frequency Precise Point Positioning Software[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8): 783-787 http://ch.whu.edu.cn/article/id/1678
    [2]
    房成贺, 陈俊平, 兰孝奇, 等. 联合BDS/GPS的北斗广域差分实时电离层延迟格网改正方法研究[J]. 大地测量与地球动力学, 2019, 39(2): 169-177 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201902013.htm

    Fang Chenghe, Chen Junping, Lan Xiaoqi, et al. Research on BeiDou Wide Area Real-Time Differential Ionospheric Delay Grid Correction Based on BDS/GPS Observations[J]. Journal of Geodesy and Geodynamics, 2019, 39(2): 169-177 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201902013.htm
    [3]
    Li Xingxing, Ge Maorong, Zhang Hongping, et al. A Method for Improving Uncalibrated Phase Delay Estimation and Ambiguity-Fixing in Real-Time Precise Point Positioning[J]. Journal of Geodesy, 2013, 87 (5): 405-416 doi: 10.1007/s00190-013-0611-x
    [4]
    刘长建. GNSS电离层建模方法与质量控制研究[D]. 河南: 信息工程大学, 2011

    Liu Changjian. Study on Modeling Method and Model Quality Control of Ionosphere Based on GNSS[D].Henan: Information Engineering University, 2011
    [5]
    袁运斌. 基于GPS的电离层监测及延迟改正理论与方法的研究[D]. 武汉: 中国科学院研究生院测量与地球物理研究所, 2002

    Yuan Yunbin. Study on Theories and Methods of Correcting Ionospheric Delay and Monitoring Ionosphere Based on GPS[D].Wuhan: Institute of Geodesy and Geophysics, Chinese Academy of Sciences, 2002
    [6]
    Schaer S. Mapping and Predicting the Earth's Ionosphere Using the Global Positioning System[D]. Switzerland: University of Bern, 1999
    [7]
    Feltrns J, Schaer S. IGS Products for the Ionosphere[J]. Proceeding of the IGS Ac Workshop, 1998: 225-232 http://citeseerx.ist.psu.edu/viewdoc/summary?cid=25102061
    [8]
    Feltens J. Development of a New Three-Dimensional Mathematical Ionosphere Model at European Space Agency/European Space Operations Centre[J]. Space Weather the International Journal of Researh & Applications, 2007, 5(5): 177-180 doi: 10.1029/2006SW000294/full
    [9]
    Ghoddousi-Fard R, Héroux P, Danskin D, et al. Developing a GPS TEC Mapping Service over Canada[J]. Space Weather-The International Journal of Research & Applications, 2011, 9(6): 1-10 doi: 10.1029/2010SW000621
    [10]
    Zhang H, Xu P, Han W, et al. Eliminating Negative VTEC in Global Ionosphere Maps Using Inequality-Constrained Least Squares[J]. Advances in Space Research, 2013, 51(6): 988-1 000 doi: 10.1016/j.asr.2012.06.026
    [11]
    Hernández-Pajares M, Roma-Dollase D, Krankowski A, et al. Methodology and Consistency of Slant and Vertical Assessments for Ionosphere Electron Model[J]. Journal of Geodesy, 2017(2): 1-10 doi: 10.1007%2Fs00190-017-1032-z
    [12]
    章红平, 韩文慧, 黄玲, 等. 地基GNSS全球电离层延迟建模[J]. 武汉大学学报·信息科学版, 2012, 37(10): 1 186-1 189 http://ch.whu.edu.cn/article/id/355

    Zhang Hongping, Han Wenhui, Huang Ling, et al. Modeling Global Ionospheric Delay with IGS Ground-based GNSS Obervations[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10): 1 186-1 189 http://ch.whu.edu.cn/article/id/355
    [13]
    Tang W M, Jin L, Xu K. Proformance Analysis of Ionsphere Moitoring with BeiDou CORS Observational Data[J]. Journal of Navigation, 2014, 67(3): 511-522 doi: 10.1017/S0373463313000854
    [14]
    张瑞. 多模GNSS实时电离层精化建模及其应用研究[D]. 武汉: 武汉大学, 2013

    Zhang Rui. Theory and Method on Multimode GNSS Real-Time Refinement Ionospheric Modeling and Its Application[D]. Wuhan: Wuhan University, 2013
    [15]
    熊波, 万卫星, 宁百齐, 等. 基于北斗、GLONASS和GPS系统的中低纬度电离层特性联合探测[J]. 地球物理学报, 2014, 57(11): 3 586-3 599 doi: 10.6038/cjg20141112

    Xiong Bo, Wan Weixing, Ning Baiqi, et al. Investigation of Mid-Latitude and Low-Latitude Ionosphere Based on BDS, GLONASS and GPS Observations[J]. Chinese Journal of Geophysics, 2014, 57(11): 3 586-3 599 doi: 10.6038/cjg20141112
    [16]
    张宝成, 欧吉坤, 李子申, 等. 利用精密单点定位求解电离层延迟[J]. 地球物理学报, 2011, 54(4): 950-957 doi: 10.3969/j.issn.0001-5733.2011.04.009

    Zhang Baocheng, Ou Jikun, Li Zishen, et al. Determination of Ionospheric Observabels with Precise Point Positioning[J]. Chinese Journal of Geophysics, 2011, 54(4): 950-957 doi: 10.3969/j.issn.0001-5733.2011.04.009
    [17]
    李玮, 程鹏飞, 秘金钟. 利用非组合精密单点定位提取区域电离层延迟及其精度评定[J]. 武汉大学学报·信息科学版, 2011, 36(10): 1 200-1 203 http://ch.whu.edu.cn/article/id/695

    Li Wei, Cheng Pengfei, Bi Jinzhong. Regional Ionosphere Delays'Calibration and Accuracy Assessment Based on Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1 200-1 203 http://ch.whu.edu.cn/article/id/695
    [18]
    Rovira-Garcia A, Juan J M, Sanz J, et al. A Worldwide Ionosphere Model for Fast Precise Point Positioning[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015, 53(8): 4 596-4 604 http://ieeexplore.ieee.org/document/7053952/references
    [19]
    房成贺. GNSS硬件延迟解算及实时电离层延迟改正方法研究[D]. 南京: 河海大学, 2017

    Fang Chenghe. Research on GNSS Differential Code Bias and Real-time Ionospheric Delay Correction Calculation[D]. Nanjing: Hohai University, 2017
    [20]
    章红平, 高周正, 牛小骥, 等. GPS非差非组合精密单点定位算法研究[J]. 武汉大学学报·信息科学版, 2013, 38(12): 1 396-1 399 http://ch.whu.edu.cn/article/id/2833

    Zhang Hongping, Gao Zhouzheng, Niu Xiaoji, et al. Research on GPS Precise Point Positioning with Un-differential and Un-combined Observations[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1 396-1 399 http://ch.whu.edu.cn/article/id/2833
    [21]
    Zhou Feng, Dong Danan, Li Pan, et al. Influence of Stochastic Modeling for Intersystem Biases on MultiGNSS Undiferenced and Uncombined Precise Point Positioning[J]. GPS Solutions, 2019, 23(3): 59-65 doi: 10.1007/s10291-019-0852-0
    [22]
    肖玉钢, 王峥, 陈华, 等. 法方程叠加的多模GNSS双差精密算法[J]. 测绘通报, 2018(10): 88-92 https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201810020.htm

    Xiao Yugang, Wang Zheng, Chen Hua, et al. A Precise Multi-GNSS Data Processing Algorithm with Double Difference Observations Based on the Normal Equation Stacking Technique[J]. Bulletin of Surveying and Mapping, 2018(10): 88-92 https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201810020.htm
    [23]
    张辉, 郝金明, 刘伟平, 等. 估计接收机差分码偏差的GPS/BDS非组合精密单点定位模型[J]. 武汉大学学报·信息科学版, 2019, 44(4): 495-500, 592 doi: 10.13203/j.whugis20170119

    Zhang Hui, Hao Jinming, Liu Weiping, et al. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592 doi: 10.13203/j.whugis20170119
    [24]
    付伟, 姚顽强, 陈鹏, 等. 基于多项式的区域电离层建模精度分析与验证[J]. 北京测绘, 2018, 32(10): 1 219-1 225 https://www.cnki.com.cn/Article/CJFDTOTAL-BJCH201810024.htm

    Fu Wei, Yao Wanqiang, Chen Peng, et al. Polynomial Based Accuracy and Validation of Regional Ionospheric Modeling[J]. Beijing Surveying and Mapping, 2018, 32(10): 1 219-1 225 https://www.cnki.com.cn/Article/CJFDTOTAL-BJCH201810024.htm
    [25]
    Zhou Feng, Dong Danan, Li Weiwei, et al. GAMP: An Open-Source Software of Multi-GNSS Precise Point Positioning Using Undifferenced and Uncombined Observations[J]. GPS Solutions, 2018, 22 (2): 1-10 http://smartsearch.nstl.gov.cn/paper_detail.html?id=136b66966a20eff09edb091a70187768
    [26]
    周承松, 彭月, 张小红, 等. 精密单点定位收敛时间的确定方法研究[J]. 导航定位学报, 2016, 4(1): 80-87 https://www.cnki.com.cn/Article/CJFDTOTAL-CHWZ201601016.htm

    Zhou Chengsong, Peng Yue, Zhang Xiaohong, et al. A Study of Method in Determining the Precise Point Positioning Convergence Time[J]. Journal of Navigation and Positioning, 2016, 4(1): 80-87 https://www.cnki.com.cn/Article/CJFDTOTAL-CHWZ201601016.htm
  • Cited by

    Periodical cited type(8)

    1. 高奎亮,刘冰,余旭初,余岸竹,孙一帆. 面向高光谱影像分类的网络结构自动搜索方法. 武汉大学学报(信息科学版). 2024(02): 225-235 .
    2. 崔林林,仙巍,柳锦宝. 产学研背景下遥感科学与技术专业”遥感原理与应用”实验教学改革探讨. 电脑与信息技术. 2023(01): 92-95 .
    3. 李杰,曾超,刘汇慧,李慧芳. 地学大数据背景下遥感课程的多阶段进阶混合式教学模式探索. 测绘通报. 2023(S2): 131-136 .
    4. 薛冰,赵冰玉,李京忠. 地理学视角下城市复杂性研究综述——基于近20年文献回顾. 地理科学进展. 2022(01): 157-172 .
    5. 桑国庆,唐志光,毛克彪,邓刚,王靖文,李佳. 基于GEE云平台与Sentinel数据的高分辨率水稻种植范围提取——以湖南省为例. 作物学报. 2022(09): 2409-2420 .
    6. 徐恩恩,郭颖,陈尔学,李增元,赵磊,刘清旺. 基于无人机LiDAR和高空间分辨率卫星遥感数据的区域森林郁闭度估测模型. 武汉大学学报(信息科学版). 2022(08): 1298-1308 .
    7. 孙玉梅,刘昱豪,边占新,孙亮,陈敬周. 深度学习PaddlePaddle框架支持下的遥感智能视觉平台研究与实现. 测绘通报. 2021(11): 65-69+75 .
    8. 陈晓峰. 光学遥感立体测绘技术及其发展趋势研究. 光源与照明. 2021(11): 69-71 .

    Other cited types(8)

Catalog

    Article views (1458) PDF downloads (121) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return