XIE Mingli, JU Nengpan, ZHAO Jianjun, FAN Qiang, HE Chaoyang. Comparative Analysis on Classification Methods of Geological Disaster Susceptibility Assessment[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 1003-1014. DOI: 10.13203/j.whugis20190317
Citation: XIE Mingli, JU Nengpan, ZHAO Jianjun, FAN Qiang, HE Chaoyang. Comparative Analysis on Classification Methods of Geological Disaster Susceptibility Assessment[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 1003-1014. DOI: 10.13203/j.whugis20190317

Comparative Analysis on Classification Methods of Geological Disaster Susceptibility Assessment

Funds: 

Innovative Research Groups of the National Natural Science Foundation of China 41521002

Independent Research Projects of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection SKLGP2017Z016

Independent Research Projects of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection SKLGP2017Z017

More Information
  • Author Bio:

    XIE Mingli, PhD candidate, specializes in geological hazards evaluation and prediction.E-mail: 565725640@qq.com

  • Corresponding author:

    JU Nengpan, PhD, professor. E-mail: jnp@cdut.edu.cn

  • Received Date: January 16, 2020
  • Published Date: July 09, 2021
  •   Objectives  Geological hazards not only cause serious economic losses and ecological damage, but also threaten the survival of mankind. The evaluation of geological hazard susceptibility is the basis of risk assessment of geological hazards. Previous studies focused on the selection of susceptibility assessment methods, but less on how to classify the susceptibility index of geological hazards. However, there is no good quantitative classification standard for the susceptibility of geological hazards in the current research results.
      Methods  Taking Wenchuan County of Sichuan Province as an example, twelve widely used factors affecting geological hazard susceptibility was selected, and the susceptibility assessment was carried out by using the information quantity model. The evaluation accuracy of the model was tested by the success rate curve. We proposed a quantitative classification standard for susceptibility. The susceptibility index is a cumulative curve of the proportion of geological hazards in descending order, and the susceptibility index is divided into five intervals: 5% of historical disaster points (low-prone), the remaining 10% (medium-prone), the remaining 20% (high-prone), and the remaining 65% (very-high).
      Results  The method of cumulative proportion subsection of historical geological hazards was compared with other eight methods and the accuracy of classification is verified. The results showed that the evaluation accuracy of the model was checked by two methods of validating the sample success rate curve and the non-disaster point sample success rate curve, and the rationality of the prediction results of the evaluation model was determined. The cumulative proportion subsection method of historical geological hazards showed good reasonableness in three ways: The proportion accuracy verification of vulnerable classification area, the frequency ratio accuracy verification of geological hazards and the location classification accuracy verification of geological hazards. It was the best classification standard in nine classification methods.
      Conclusions  The quantitative classification standard for the susceptibility of geological hazards established in this article has a good application effect, but this standard needs more examples to verify. Geological hazard susceptibility evaluation is based on a good factor classification. Research work needs not only to focus on scientific and advanced evaluation methods, but also basic research on how to select factors and rational classification of factors.
  • [1]
    Guzzetti F, Carrara A, Cardinali M, et al. Landslide Hazard Evaluation: A Review of Current Techniques and Their Application in a Multi-scale Study, Central Italy[J]. Geomorphology, 1999, 31(1): 181-216 http://www.sciencedirect.com/science/article/pii/s0169555x99000781
    [2]
    Uitto J I, Shaw R. Sustainable Development and Disaster Risk Reduction: Introduction[M]// Uitto J I, Shaw R. Sustainable Development and Disaster Risk Reduction. Japan: Springer, 2016
    [3]
    Chen W, Ding X, Zhao R, et al. Application of Frequency Ratio and Weights of Evidence Models in Landslide Susceptibility Mapping for the Shangzhou District of Shangluo City, China[J]. Environ Earth Sci, 2016, 75(1): 1-10 doi: 10.1007/s12665-015-4873-x
    [4]
    Park S, Choi C, Kim B, et al. Landslide Susceptibility Mapping Using Frequency Ratio, Analytic Hierarchy Process, Logistic Regression, and Artificial Neural Network Methods at the Inje Area, Korea[J]. Environ Earth Sci, 2013, 68(5): 1 443-1 464 doi: 10.1007/s12665-012-1842-5
    [5]
    Komac M. A Landslide Susceptibility Model Using the Analytical Hierarchy Process Method and Multivariate Statistics in Perialpine Slovenia[J]. Geomorphology, 2006, 74(1): 17-28 http://www.sciencedirect.com/science/article/pii/S0169555X05002072
    [6]
    Conforti M, Aucelli P P C, Robustelli G, et al. Geomorphology and GIS Analysis for Mapping Gully Erosion Susceptibility in the Turbolo Stream Catchment (Northern Calabria, Italy)[J]. Natural Hazards, 2011, 56(3): 881-898 doi: 10.1007/s11069-010-9598-2
    [7]
    Devkota K C, Regmi A D, Pourghasemi H R, et al. Landslide Susceptibility Mapping Using Certainty Factor Index of Entropy and Logistic Regression Models in GIS and Their Comparison at Mugling-Narayanghat Road Section in Nepal Himalaya[J]. Natural Hazards, 2013, 65(2): 135-165 doi: 10.1007/s11069-012-0347-6
    [8]
    武雪玲, 沈少青, 牛瑞卿. GIS支持下应用PSO-SVM模型预测滑坡易发性[J]. 武汉大学学报·信息科学版, 2016, 41(5): 665-671 http://ch.whu.edu.cn/article/id/5447

    Wu Xueling, Shen Shaoqing, Niu Ruiqing. Landslide Susceptibility Prediction Using GIS and PSO-SVM[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 665-671 http://ch.whu.edu.cn/article/id/5447
    [9]
    刘坚, 李树林, 陈涛. 基于优化随机森林模型的滑坡易发性评价[J]. 武汉大学学报·信息科学版, 2018, 43(7): 1 085-1 091 http://ch.whu.edu.cn/article/id/6157

    Liu Jian, Li Shulin, Chen Tao. Landslide Susceptibility Assessment Based on Optimized Random Forest Model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1 085-1 091 http://ch.whu.edu.cn/article/id/6157
    [10]
    Pradhan B. A Comparative Study on the Predictive Ability of the Decision Tree, Support Vector Machine and Neuro-Fuzzy Models in Landslide Susceptibility Mapping Using GIS[J]. Comput Geosci, 2013, 51: 350-365 doi: 10.1016/j.cageo.2012.08.023
    [11]
    王佳佳, 殷坤龙, 肖莉丽. 基于GIS和信息量的滑坡灾害易发性评价——以三峡库区万州区为例[J]. 岩石力学与工程学报, 2014, 33(4): 797-808 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404018.htm

    Wang Jiajia, Yin Kunlong, Xiao Lili. Landslide Susceptibility Assessment Based on GIS and Weighted Information Value: A Case Study of Wanzhou District, Three Gorges Reservoir[J]. Journal of Rock Mechanics and Engineering, 2014, 33(4): 797-808 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404018.htm
    [12]
    许冲, 戴福初, 姚鑫, 等. 基于GIS与确定性系数分析方法的汶川地震滑坡易发性评价[J]. 工程地质学报, 2010, 18(1): 15-26 doi: 10.3969/j.issn.1004-9665.2010.01.003

    Xu Chong, Dai Fuchu, Yao Xin, et al. Study on Wenchuan Earthquake-Induced Landslide Susceptibility Evaluation Based on GIS Platform and Certainty Factor Analysis Method[J]. Journal of Engineering Geology, 2010, 18(1): 15-26 doi: 10.3969/j.issn.1004-9665.2010.01.003
    [13]
    黄发明, 殷坤龙, 蒋水华, 等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报, 2018, 37(1): 156-167 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm

    Huang Faming, Yin Kunlong, Jiang Shuihua, et al. Landslide Susceptibility Assessment Based on Clustering Analysis and Support Vector Machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 156-167 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm
    [14]
    桂蕾. 三峡库区万州区滑坡发育规律及风险研究[D]. 武汉: 中国地质大学, 2014

    Gui Lei. Research on Landslide Development Regularities and Risk in Wanzhou District, Three Gorges Reservoir[D]. Wuhan: China University of Geosciences, 2014
    [15]
    樊芷吟, 苟晓峰, 秦明月, 等. 基于信息量模型与Logistic回归模型耦合的地质灾害易发性评价[J]. 工程地质学报, 2018, 26(2): 340-347 https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201802008.htm

    Fan Zhiyin, Gou Xiaofeng, Qin Mingyue, et al. Based on the Information Model and Logistic Regression Model Coupling Analysis of the Sensitivity of Geological Disasters[J]. Journal of Engineering Geology, 2018, 26(2): 340-347 https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201802008.htm
    [16]
    van Westen C J, Castellanos E, Kuriakose S L. Spatial Data for Landslide Susceptibility, Hazard, and Vulnerability Assessment: An Overview[J]. Engineering Geology, 2008, 102(2/3): 112-131
    [17]
    于宪煜. 基于多源数据和多尺度分析的滑坡易发性评价方法研究[D]. 武汉: 中国地质大学, 2016

    Yu Xianyu. Study on Landslide Susceptibility Evaluvation Method Based on Multi-source Data and Multi-scale Analysis[D]. Wuhan: China University of Geosciences, 2016
    [18]
    Wang Qiqing, Li Wenping, Chen Wei, et al. GIS-Based Assessment of Landslide Susceptibility Using Certainty Factor and Index of Entropy Models for the Qianyang County of Baoji City, China[J]. Journal of Earth System Science, 2015, 124(7): 1-17 doi: 10.1007/s12040-015-0624-3?no-access=true
    [19]
    Xu Chong, Xu Xiwei, Dai Fuchu, et al. Landslide Hazard Mapping Using GIS and Weight of Evidence Model in Qingshui River Watershed of 2008 Wenchuan Earthquake Struck Region[J]. Journal of Earth Science, 2012, 23(1): 97-120 doi: 10.1007/s12583-012-0236-7
    [20]
    范强, 巨能攀, 向喜琼, 等. 2014. 证据权法在区域滑坡危险性评价中的应用——以贵州省为例[J]. 工程地质学报, 2014, 22(3): 474-481 https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201403022.htm

    Fan Qiang, Ju Nengpan, Xiang Xiqiong, et al. Landslide Hazards Assessment with Weights of Evidence—A Case Study in Guizhou, China[J]. Journal of Engineering Geology, 2014, 22(3): 474-481 https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201403022.htm
    [21]
    Singh C D, Kohli A, Kumar P. Comparison of Results of BIS and GSI Guidelines on Macrolevel Landslide Hazard Zonation — A Case Study Along Highway from Bhalukpong to Bomdila, West Kameng District, Arunachal Pradesh[J]. Journal of the Geological Society of India, 2014, 83(6): 688-696 doi: 10.1007/s12594-014-0101-7
    [22]
    孟祥瑞, 裴向军, 刘清华, 等. GIS支持下基于因子分析法的都汶路沿线地质灾害易发性评价[J]. 中国地质灾害与防治学报, 2016, 27(3): 106-115 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201603016.htm

    Meng Xiangrui, Pei Xiangjun, Liu Qinghua, et al. GIS-Based Susceptibility Assessment of Geological Hazards Along the Road from Dujiangyan to Wenchuan by Factor Analysis[J]. The Chinese Journal of Geological Hazard and Control, 2016, 27(3): 106-115 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201603016.htm
    [23]
    陈悦丽, 陈德辉, 李泽椿, 等. 基于Monte Carlo-SHALSTAB模型的滑坡危险性评价——以福建省德化县为例[J]. 灾害学, 2015, 30(4): 101-106 doi: 10.3969/j.issn.1000-811X.2015.04.020

    Chen Yueli, Chen Dehui, Li Zechun, et al. Assessment of Landslide Hazard Based on Monte Carlo-SHALSTAB Model[J]. Journal of Catastrophology, 2015, 30(4): 101-106 doi: 10.3969/j.issn.1000-811X.2015.04.020
    [24]
    邓越, 周廷刚, 蒋卫国. 都江堰市地质灾害危险性及潜在影响评估[J]. 灾害学, 2016, 31(2): 196-199 doi: 10.3969/j.issn.1000-811X.2016.02.037

    Deng Yue, Zhou Tinggang, Jiang Weiguo. Assessment of Geological Disaster Hazard and Potential Impact in Dujiangyan City[J]. Journal of Catastrophology, 2016, 31(2): 196-199 doi: 10.3969/j.issn.1000-811X.2016.02.037
    [25]
    Bai Shibiao, Wang Jian, Lu Guonian, et al. GIS-Based Logistic Regression for Landslide Susceptibility Mapping of the Zhongxian Segment in the Three Gorges Area, China[J]. Geomorphology, 2010, 115(1): 23-31 http://www.cabdirect.org/abstracts/20103055551.html
    [26]
    许冲, 戴福初, 姚鑫, 等. 基于GIS的汶川地震滑坡灾害影响因子确定性系数分析[J]. 岩石力学与工程学报, 2010, 29(S1): 2 972-2 981 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1057.htm

    Xu Chong, Dai Fuchu, Yao Xin, et al. GIS Based Certainty Factor Analysis of Landslide Triggering Factors in Wenchuan Earthquake of 12 May 2008, Sichuan, China[J]. Journal of Rock Mechanics and Engineering, 2010, 29(S1): 2 972-2 981 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1057.htm
    [27]
    张俊, 殷坤龙, 王佳佳, 等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报, 2016, 35(2): 284-296 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404018.htm

    Zhang Jun, Yin Kunlong, Wang Jiajia, et al. Evaluation of Landslide Susceptibility for Wanzhou District of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 284-296 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404018.htm
    [28]
    Pradhan B, Lee S. Regional Landslide Susceptibility Analysis Using Back-Propagation Neural Network Model at Cameron Highland, Malaysia[J]. Landslides, 2010, 7(1): 13-30 doi: 10.1007/s10346-009-0183-2
    [29]
    Jiang Weiguo, Rao Pingzeng, Cao Ran, et al. Comparative Evaluation of Geological Disaster Susceptibility Using Multi-regression Methods and Spatial Accuracy Validation[J]. Journal of Geographical Sciences, 2017, 27(4): 439-462 doi: 10.1007/s11442-017-1386-4
    [30]
    高克昌, 崔鹏, 赵纯勇, 等. 基于地理信息系统和信息量模型的滑坡危险性评价——以重庆万州为例[J]. 岩石力学与工程学报, 2006, 25(5): 991-996 doi: 10.3321/j.issn:1000-6915.2006.05.020

    Gao Kechang, Cui Peng, Zhao Chunyong, et al. Landslide Hazard Evaluation of Wanzhou Based on GIS Information Value Method in the Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 991-996 doi: 10.3321/j.issn:1000-6915.2006.05.020
    [31]
    牛全福, 程维明, 兰恒星, 等. 基于信息量模型的玉树地震次生地质灾害危险性评价[J]. 山地学报, 2011, 29(2): 243-249 doi: 10.3969/j.issn.1008-2786.2011.02.014

    Niu Quanfu, Cheng Weiming, Lan Henxing, et al. Susceptibility Assessment of Secondary Geological Disaster Based on Information Value Methodology for Yushu Earthquake Region[J]. Journal of Mountain Science, 2011, 29(2): 243-249 doi: 10.3969/j.issn.1008-2786.2011.02.014
    [32]
    武雪玲, 杨经宇, 牛瑞卿. 一种结合SMOTE和卷积神经网络的滑坡易发性评价方法[J]. 武汉大学学报·信息科学版, 2020, 45(8): 1 223-1 232 doi: 10.13203/j.whugis20200127

    Wu Xueling, Yang Jingyu, Niu Ruiqing. A Landslide Susceptibility Assessment Method Using SMOTE and Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1 223-1 232 doi: 10.13203/j.whugis20200127
    [33]
    徐胜华, 刘纪平, 王想红, 等. 熵指数融入支持向量机的滑坡灾害易发性评价方法——以陕西省为例[J]. 武汉大学学报·信息科学版, 2020, 45(8): 1 214-1 222 doi: 10.13203/j.whugis20200109

    Xu Shenghua, Liu Jiping, Wang Xianghong, et al. Landslide Susceptibility Assessment Method Incorporating Index of Entropy Based on Support Vector Machine: A Case Study of Shaanxi Province[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1 214-1 222 doi: 10.13203/j.whugis20200109
  • Related Articles

    [1]WU Hongyang, ZHOU Chao, LIANG Xin, WANG Yue, YUAN Pengcheng, WU Lixing. Evaluation of Landslide Susceptibility Based on Sample Optimization Strategy[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1492-1502. DOI: 10.13203/j.whugis20220527
    [2]GE Qiaoqiao, SUN Qian, ZHANG Ning, HU Jun. Evaluation of Geological Hazard Susceptibility of Baiyin City Based on Multi-temporal InSAR Deformation Measurements[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1434-1443. DOI: 10.13203/j.whugis20220192
    [3]GUO Fei, WU Di, GE Minrong, DONG Jinlong, FANG Hao, TIAN Dongfang. The Influence of Continuous Variable Factor Classification and Machine Learning Model on the Accuracy of Landslide Susceptibility Evaluation[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230413
    [4]Chen Xinyang, Long Xiaoxiang, Li Qingpeng, Li Jingmei, Han Qijin, Xu Zhaopeng, Yao Weiyuan. Data Proccing and Accuracy Verification for Laser Altimeter of Terrestrial Ecosystem Carbon Inventory Satellite[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230110
    [5]WU Xueling, YANG Jingyu, NIU Ruiqing. A Landslide Susceptibility Assessment Method Using SMOTE and Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1223-1232. DOI: 10.13203/j.whugis20200127
    [6]ZHOU Lü, GUO Jiming, HU Jiyuan, ZHANG Di, CHEN Ming, YANG Fei. Accuracy Verification and Analysis of Ground-based Synthetic Aperture Radar Based on Two-dimensional Deformation Field[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 289-295. DOI: 10.13203/j.whugis20170085
    [7]JIANG Lili, QI Qingwen, ZHANG An. River Classification and River Network Structuration in River Auto-selection[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 841-846. DOI: 10.13203/j.whugis20130538
    [8]YAO Na, LIN Zongjian, ZHANG Jingxiong, REN Chaofeng. Geostatistical Approaches to Post-classification of Remote Sensing Image[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 15-18.
    [9]ZHAO Yang, XU Xiaogang, ZHANG Gongxuan, ZHANG Rong. Employment of Program Annotations in Trusted Code and Their Type Verification[J]. Geomatics and Information Science of Wuhan University, 2010, 35(5): 570-573.
    [10]GUO Qingsheng, LI Liusuo, JIA Yuming, SUN Yan. Quality Evaluation of Statistical Data Classification Considering Spatial Autocorrelation[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 240-243.
  • Cited by

    Periodical cited type(43)

    1. 崔婷婷,安雪莲,孙德亮,陈东升,朱有晨. 基于SHAP的可解释机器学习的滑坡易发性评价模型. 成都理工大学学报(自然科学版). 2025(01): 153-172 .
    2. 黄发明,张崟琅,郭子正,范宣梅,周创兵. 不同分级方法对区域滑坡易发性区划的影响. 工程科学与技术. 2024(01): 148-159 .
    3. 邬礼扬,殷坤龙,曾韬睿,刘书豪,刘真意. 不同栅格尺寸下输电线路地质灾害易发性评价. 地质科技通报. 2024(01): 241-252 .
    4. 陈宾,李颖懿,张联志,屈添强,魏娜,刘宁,黄春林. 地质灾害易发性评价因子分级的AIFFC算法优化. 中国地质灾害与防治学报. 2024(01): 72-81 .
    5. 刘长江,罗晓东. 南疆盐渍土峡谷景区滑坡易发性评价. 科技与创新. 2024(05): 71-74+77 .
    6. 何哲,石玉玲,李富春,贾卓龙,晏长根. 基于LightGBM模型的甘肃省临夏县滑坡易发性评价. 水资源与水工程学报. 2024(01): 197-205+216 .
    7. 田尤,黄海,高波,陈龙,李元灵,杨东旭,张佳佳,李洪梁. 考虑冻融侵蚀型物源的不同流域单元泥石流易发性评价——以藏东贡觉地区为例. 冰川冻土. 2024(01): 40-51 .
    8. 高星星,马鹏斐,吕义清,赵金亮,何海龙. 基于统计方法耦合地理探测器的地质灾害易发性评价——以吕梁山区为例. 水土保持通报. 2024(01): 193-205 .
    9. 肖燕,王潇,姚海鹏. 基于易发程度指数法的集镇斜坡地质灾害易发性评价——以茶恩寺镇斜坡为例. 科技和产业. 2024(09): 153-157 .
    10. 蔡抒,程先富. 基于不同模型的安徽大别山区滑坡易发性评价对比分析. 安徽师范大学学报(自然科学版). 2024(02): 152-160 .
    11. 肖海平,万俊辉,陈兰兰,范永超,陈磊. 加权信息量支持下融合InSAR形变特征的滑坡易发性评价. 大地测量与地球动力学. 2024(07): 718-724 .
    12. 李亚,邓南荣,陈朝,陈进栋,王琦,李冠虹. 基于多源模型的粤北山区县域地质灾害危险性评价与驱动力分析. 地球与环境. 2024(03): 330-342 .
    13. 寸得欣,令狐昌卫,马一奇,尹林虎,陈庆松,刘振南,涂春霖. 基于GIS和加权信息量模型的富源县地质灾害易发性评价. 科学技术与工程. 2024(18): 7563-7573 .
    14. 王清和,郑宇,刘珮勋,陈尚波,李佳. 非煤地下矿山灾害影响因素分析与风险管控体系研究. 世界有色金属. 2024(08): 192-195 .
    15. 王阳,周小虎,史小辉,黄琪,刘禄山. 青藏高原东北缘清水河流域地貌特征及其构造意义. 成都理工大学学报(自然科学版). 2024(04): 624-639+648 .
    16. 彭志忠,袁飞云,何朝阳,李东来,解明礼,饶泽迅. 地质灾害多源基础数据结构体系及应用. 成都理工大学学报(自然科学版). 2024(04): 675-686 .
    17. 张云,资锋,曹运江,成湘伟,韩用顺,唐龙. GIS支持下基于归一化信息量模型的地质灾害易发性评价. 矿业工程研究. 2024(02): 20-28 .
    18. 孙琪皓,刘桂卫,王飞,张璇钰,王衍汇. 铁路地质灾害早期识别与监测预警技术及应用研究. 铁道标准设计. 2024(09): 24-31 .
    19. 许烈,巨能攀,邓明东,解明礼,周福军,李朝纲,唐颍. 不同评价单元的滑坡易发性评价精度对比分析. 工程地质学报. 2024(05): 1640-1653 .
    20. 于小曼,简文星,邵山,王浩,简志华,吴凯锋,张峰. GIS支持下基于CF和CF-LR模型的恩施州滑坡灾害易发性评价. 地质与资源. 2024(05): 716-724 .
    21. 张凯. 区域滑坡地质灾害易发性评价研究. 科技与创新. 2024(22): 145-147 .
    22. 李昊,代泽林,毕杰. 输电线路地质灾害风险评估策略及方法. 云南电业. 2024(06): 8-13 .
    23. 刘金沧,王欢欢,李云,杨婷. 基于支持向量机的华南斜坡类地质灾害易发性评价:以肇庆市怀集县为例. 时空信息学报. 2024(06): 785-794 .
    24. 王瑛,祁京,王姝苓,李璨,俞海洋. 基于聚类与统计分级的河北省气象灾害综合区划研究. 灾害学. 2023(02): 85-88+113 .
    25. 张伟,周松林,尹仑. 基于优化MaxEnt模型的高山峡谷区地质灾害易发性评价——以云南省德钦县为例. 灾害学. 2023(02): 185-190 .
    26. 徐澯,黄智卿,宫阿都,巴婉茹. 面向不可移动文物的地震灾害风险评估——以福建省全国重点文物保护单位石窟寺及石刻为例. 北京师范大学学报(自然科学版). 2023(03): 449-455 .
    27. 马博,朱杰勇,刘帅,杨得虎. 联合时序InSAR和滑坡灾害易发性的元阳县滑坡灾害隐患识别. 地质灾害与环境保护. 2023(03): 8-14 .
    28. 章昱,王磊,伏永朋,刘亚磊,黄皓. 基于斜坡单元与信息量法的丹江口库区典型流域地质灾害易发性评价. 华南地质. 2023(03): 512-522 .
    29. 陈思尧,游水生,杨剑红,刘虹强. 基于信息量模型与层次分析法的地质灾害易发性评价——以宣汉县为例. 科技和产业. 2023(22): 221-229 .
    30. 孙庆敏,葛永刚,陈攀,梁馨月,杜宇琛. 汶川典型植物根-土复合体抗剪强度影响因素评价. 水土保持学报. 2022(01): 58-65 .
    31. 张重,龚健,李靖业,张子煜,张木茜. 基于信息量模型的三江源东部草地退化易发性评价——以青海省果洛州为例. 资源科学. 2022(03): 464-479 .
    32. 温鑫,范宣梅,陈兰,刘世康. 基于信息量模型的地质灾害易发性评价:以川东南古蔺县为例. 地质科技通报. 2022(02): 290-299 .
    33. 赵腾跃,何政伟. 基于信息量的金川县斜坡地质灾害易发性评价. 物探化探计算技术. 2022(02): 203-212 .
    34. 黄发明,石雨,欧阳慰平,洪安宇,曾子强,徐富刚. 基于证据权和卡方自动交互检测决策树的滑坡易发性预测. 土木与环境工程学报(中英文). 2022(05): 16-28 .
    35. 谢浪. 矿山地面塌陷区地质灾害风险模糊综合监测方法. 矿冶. 2022(04): 7-12+18 .
    36. 龚凌枫,徐伟,铁永波,卢佳燕,张玙,高延超. 基于数值模拟的城镇地质灾害危险性评价方法. 中国地质调查. 2022(04): 82-91 .
    37. 徐锦宏,翁茂芝,胡元平,王宁涛. 长江上游磨刀溪流域地质灾害易发性分区评价. 资源环境与工程. 2022(04): 494-503 .
    38. 简鹏,李文彦,张治家,时伟,党发宁,郭红东,李松. 基于多因素加权指数和法的区域地质灾害易发性评价研究——以麦积区为例. 甘肃地质. 2022(03): 63-72 .
    39. 周萍,邓辉,张文江,薛东剑,吴先谭,卓文浩. 基于信息量模型和机器学习方法的滑坡易发性评价研究——以四川理县为例. 地理科学. 2022(09): 1665-1675 .
    40. 田媛,巨能攀,解明礼,刘秀伟,何朝阳. 滑坡编录表达模式对易发性评价结果的影响. 成都理工大学学报(自然科学版). 2022(05): 606-615 .
    41. 王小东,罗园,付景保. 基于GIS的白龙江引水工程水源区地质灾害易发性评价. 南水北调与水利科技(中英文). 2022(06): 1231-1239 .
    42. 沈迪,郭进京,王志恒,陈俊合. 基于热点分析与地理探测器的地质灾害敏感性评价. 环境生态学. 2021(04): 83-89 .
    43. 黄立鑫,郝君明,李旺平,周兆叶,贾佩钱. 基于RBF神经网络-信息量耦合模型的滑坡易发性评价——以甘肃岷县为例. 中国地质灾害与防治学报. 2021(06): 116-126 .

    Other cited types(29)

Catalog

    Article views (1380) PDF downloads (236) Cited by(72)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return