XIE Mingli, JU Nengpan, ZHAO Jianjun, FAN Qiang, HE Chaoyang. Comparative Analysis on Classification Methods of Geological Disaster Susceptibility Assessment[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 1003-1014. DOI: 10.13203/j.whugis20190317
Citation: XIE Mingli, JU Nengpan, ZHAO Jianjun, FAN Qiang, HE Chaoyang. Comparative Analysis on Classification Methods of Geological Disaster Susceptibility Assessment[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 1003-1014. DOI: 10.13203/j.whugis20190317

Comparative Analysis on Classification Methods of Geological Disaster Susceptibility Assessment

Funds: 

Innovative Research Groups of the National Natural Science Foundation of China 41521002

Independent Research Projects of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection SKLGP2017Z016

Independent Research Projects of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection SKLGP2017Z017

More Information
  • Author Bio:

    XIE Mingli, PhD candidate, specializes in geological hazards evaluation and prediction.E-mail: 565725640@qq.com

  • Corresponding author:

    JU Nengpan, PhD, professor. E-mail: jnp@cdut.edu.cn

  • Received Date: January 16, 2020
  • Published Date: July 09, 2021
  •   Objectives  Geological hazards not only cause serious economic losses and ecological damage, but also threaten the survival of mankind. The evaluation of geological hazard susceptibility is the basis of risk assessment of geological hazards. Previous studies focused on the selection of susceptibility assessment methods, but less on how to classify the susceptibility index of geological hazards. However, there is no good quantitative classification standard for the susceptibility of geological hazards in the current research results.
      Methods  Taking Wenchuan County of Sichuan Province as an example, twelve widely used factors affecting geological hazard susceptibility was selected, and the susceptibility assessment was carried out by using the information quantity model. The evaluation accuracy of the model was tested by the success rate curve. We proposed a quantitative classification standard for susceptibility. The susceptibility index is a cumulative curve of the proportion of geological hazards in descending order, and the susceptibility index is divided into five intervals: 5% of historical disaster points (low-prone), the remaining 10% (medium-prone), the remaining 20% (high-prone), and the remaining 65% (very-high).
      Results  The method of cumulative proportion subsection of historical geological hazards was compared with other eight methods and the accuracy of classification is verified. The results showed that the evaluation accuracy of the model was checked by two methods of validating the sample success rate curve and the non-disaster point sample success rate curve, and the rationality of the prediction results of the evaluation model was determined. The cumulative proportion subsection method of historical geological hazards showed good reasonableness in three ways: The proportion accuracy verification of vulnerable classification area, the frequency ratio accuracy verification of geological hazards and the location classification accuracy verification of geological hazards. It was the best classification standard in nine classification methods.
      Conclusions  The quantitative classification standard for the susceptibility of geological hazards established in this article has a good application effect, but this standard needs more examples to verify. Geological hazard susceptibility evaluation is based on a good factor classification. Research work needs not only to focus on scientific and advanced evaluation methods, but also basic research on how to select factors and rational classification of factors.
  • [1]
    Guzzetti F, Carrara A, Cardinali M, et al. Landslide Hazard Evaluation: A Review of Current Techniques and Their Application in a Multi-scale Study, Central Italy[J]. Geomorphology, 1999, 31(1): 181-216 http://www.sciencedirect.com/science/article/pii/s0169555x99000781
    [2]
    Uitto J I, Shaw R. Sustainable Development and Disaster Risk Reduction: Introduction[M]// Uitto J I, Shaw R. Sustainable Development and Disaster Risk Reduction. Japan: Springer, 2016
    [3]
    Chen W, Ding X, Zhao R, et al. Application of Frequency Ratio and Weights of Evidence Models in Landslide Susceptibility Mapping for the Shangzhou District of Shangluo City, China[J]. Environ Earth Sci, 2016, 75(1): 1-10 doi: 10.1007/s12665-015-4873-x
    [4]
    Park S, Choi C, Kim B, et al. Landslide Susceptibility Mapping Using Frequency Ratio, Analytic Hierarchy Process, Logistic Regression, and Artificial Neural Network Methods at the Inje Area, Korea[J]. Environ Earth Sci, 2013, 68(5): 1 443-1 464 doi: 10.1007/s12665-012-1842-5
    [5]
    Komac M. A Landslide Susceptibility Model Using the Analytical Hierarchy Process Method and Multivariate Statistics in Perialpine Slovenia[J]. Geomorphology, 2006, 74(1): 17-28 http://www.sciencedirect.com/science/article/pii/S0169555X05002072
    [6]
    Conforti M, Aucelli P P C, Robustelli G, et al. Geomorphology and GIS Analysis for Mapping Gully Erosion Susceptibility in the Turbolo Stream Catchment (Northern Calabria, Italy)[J]. Natural Hazards, 2011, 56(3): 881-898 doi: 10.1007/s11069-010-9598-2
    [7]
    Devkota K C, Regmi A D, Pourghasemi H R, et al. Landslide Susceptibility Mapping Using Certainty Factor Index of Entropy and Logistic Regression Models in GIS and Their Comparison at Mugling-Narayanghat Road Section in Nepal Himalaya[J]. Natural Hazards, 2013, 65(2): 135-165 doi: 10.1007/s11069-012-0347-6
    [8]
    武雪玲, 沈少青, 牛瑞卿. GIS支持下应用PSO-SVM模型预测滑坡易发性[J]. 武汉大学学报·信息科学版, 2016, 41(5): 665-671 http://ch.whu.edu.cn/article/id/5447

    Wu Xueling, Shen Shaoqing, Niu Ruiqing. Landslide Susceptibility Prediction Using GIS and PSO-SVM[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 665-671 http://ch.whu.edu.cn/article/id/5447
    [9]
    刘坚, 李树林, 陈涛. 基于优化随机森林模型的滑坡易发性评价[J]. 武汉大学学报·信息科学版, 2018, 43(7): 1 085-1 091 http://ch.whu.edu.cn/article/id/6157

    Liu Jian, Li Shulin, Chen Tao. Landslide Susceptibility Assessment Based on Optimized Random Forest Model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1 085-1 091 http://ch.whu.edu.cn/article/id/6157
    [10]
    Pradhan B. A Comparative Study on the Predictive Ability of the Decision Tree, Support Vector Machine and Neuro-Fuzzy Models in Landslide Susceptibility Mapping Using GIS[J]. Comput Geosci, 2013, 51: 350-365 doi: 10.1016/j.cageo.2012.08.023
    [11]
    王佳佳, 殷坤龙, 肖莉丽. 基于GIS和信息量的滑坡灾害易发性评价——以三峡库区万州区为例[J]. 岩石力学与工程学报, 2014, 33(4): 797-808 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404018.htm

    Wang Jiajia, Yin Kunlong, Xiao Lili. Landslide Susceptibility Assessment Based on GIS and Weighted Information Value: A Case Study of Wanzhou District, Three Gorges Reservoir[J]. Journal of Rock Mechanics and Engineering, 2014, 33(4): 797-808 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404018.htm
    [12]
    许冲, 戴福初, 姚鑫, 等. 基于GIS与确定性系数分析方法的汶川地震滑坡易发性评价[J]. 工程地质学报, 2010, 18(1): 15-26 doi: 10.3969/j.issn.1004-9665.2010.01.003

    Xu Chong, Dai Fuchu, Yao Xin, et al. Study on Wenchuan Earthquake-Induced Landslide Susceptibility Evaluation Based on GIS Platform and Certainty Factor Analysis Method[J]. Journal of Engineering Geology, 2010, 18(1): 15-26 doi: 10.3969/j.issn.1004-9665.2010.01.003
    [13]
    黄发明, 殷坤龙, 蒋水华, 等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报, 2018, 37(1): 156-167 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm

    Huang Faming, Yin Kunlong, Jiang Shuihua, et al. Landslide Susceptibility Assessment Based on Clustering Analysis and Support Vector Machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 156-167 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm
    [14]
    桂蕾. 三峡库区万州区滑坡发育规律及风险研究[D]. 武汉: 中国地质大学, 2014

    Gui Lei. Research on Landslide Development Regularities and Risk in Wanzhou District, Three Gorges Reservoir[D]. Wuhan: China University of Geosciences, 2014
    [15]
    樊芷吟, 苟晓峰, 秦明月, 等. 基于信息量模型与Logistic回归模型耦合的地质灾害易发性评价[J]. 工程地质学报, 2018, 26(2): 340-347 https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201802008.htm

    Fan Zhiyin, Gou Xiaofeng, Qin Mingyue, et al. Based on the Information Model and Logistic Regression Model Coupling Analysis of the Sensitivity of Geological Disasters[J]. Journal of Engineering Geology, 2018, 26(2): 340-347 https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201802008.htm
    [16]
    van Westen C J, Castellanos E, Kuriakose S L. Spatial Data for Landslide Susceptibility, Hazard, and Vulnerability Assessment: An Overview[J]. Engineering Geology, 2008, 102(2/3): 112-131
    [17]
    于宪煜. 基于多源数据和多尺度分析的滑坡易发性评价方法研究[D]. 武汉: 中国地质大学, 2016

    Yu Xianyu. Study on Landslide Susceptibility Evaluvation Method Based on Multi-source Data and Multi-scale Analysis[D]. Wuhan: China University of Geosciences, 2016
    [18]
    Wang Qiqing, Li Wenping, Chen Wei, et al. GIS-Based Assessment of Landslide Susceptibility Using Certainty Factor and Index of Entropy Models for the Qianyang County of Baoji City, China[J]. Journal of Earth System Science, 2015, 124(7): 1-17 doi: 10.1007/s12040-015-0624-3?no-access=true
    [19]
    Xu Chong, Xu Xiwei, Dai Fuchu, et al. Landslide Hazard Mapping Using GIS and Weight of Evidence Model in Qingshui River Watershed of 2008 Wenchuan Earthquake Struck Region[J]. Journal of Earth Science, 2012, 23(1): 97-120 doi: 10.1007/s12583-012-0236-7
    [20]
    范强, 巨能攀, 向喜琼, 等. 2014. 证据权法在区域滑坡危险性评价中的应用——以贵州省为例[J]. 工程地质学报, 2014, 22(3): 474-481 https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201403022.htm

    Fan Qiang, Ju Nengpan, Xiang Xiqiong, et al. Landslide Hazards Assessment with Weights of Evidence—A Case Study in Guizhou, China[J]. Journal of Engineering Geology, 2014, 22(3): 474-481 https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201403022.htm
    [21]
    Singh C D, Kohli A, Kumar P. Comparison of Results of BIS and GSI Guidelines on Macrolevel Landslide Hazard Zonation — A Case Study Along Highway from Bhalukpong to Bomdila, West Kameng District, Arunachal Pradesh[J]. Journal of the Geological Society of India, 2014, 83(6): 688-696 doi: 10.1007/s12594-014-0101-7
    [22]
    孟祥瑞, 裴向军, 刘清华, 等. GIS支持下基于因子分析法的都汶路沿线地质灾害易发性评价[J]. 中国地质灾害与防治学报, 2016, 27(3): 106-115 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201603016.htm

    Meng Xiangrui, Pei Xiangjun, Liu Qinghua, et al. GIS-Based Susceptibility Assessment of Geological Hazards Along the Road from Dujiangyan to Wenchuan by Factor Analysis[J]. The Chinese Journal of Geological Hazard and Control, 2016, 27(3): 106-115 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201603016.htm
    [23]
    陈悦丽, 陈德辉, 李泽椿, 等. 基于Monte Carlo-SHALSTAB模型的滑坡危险性评价——以福建省德化县为例[J]. 灾害学, 2015, 30(4): 101-106 doi: 10.3969/j.issn.1000-811X.2015.04.020

    Chen Yueli, Chen Dehui, Li Zechun, et al. Assessment of Landslide Hazard Based on Monte Carlo-SHALSTAB Model[J]. Journal of Catastrophology, 2015, 30(4): 101-106 doi: 10.3969/j.issn.1000-811X.2015.04.020
    [24]
    邓越, 周廷刚, 蒋卫国. 都江堰市地质灾害危险性及潜在影响评估[J]. 灾害学, 2016, 31(2): 196-199 doi: 10.3969/j.issn.1000-811X.2016.02.037

    Deng Yue, Zhou Tinggang, Jiang Weiguo. Assessment of Geological Disaster Hazard and Potential Impact in Dujiangyan City[J]. Journal of Catastrophology, 2016, 31(2): 196-199 doi: 10.3969/j.issn.1000-811X.2016.02.037
    [25]
    Bai Shibiao, Wang Jian, Lu Guonian, et al. GIS-Based Logistic Regression for Landslide Susceptibility Mapping of the Zhongxian Segment in the Three Gorges Area, China[J]. Geomorphology, 2010, 115(1): 23-31 http://www.cabdirect.org/abstracts/20103055551.html
    [26]
    许冲, 戴福初, 姚鑫, 等. 基于GIS的汶川地震滑坡灾害影响因子确定性系数分析[J]. 岩石力学与工程学报, 2010, 29(S1): 2 972-2 981 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1057.htm

    Xu Chong, Dai Fuchu, Yao Xin, et al. GIS Based Certainty Factor Analysis of Landslide Triggering Factors in Wenchuan Earthquake of 12 May 2008, Sichuan, China[J]. Journal of Rock Mechanics and Engineering, 2010, 29(S1): 2 972-2 981 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1057.htm
    [27]
    张俊, 殷坤龙, 王佳佳, 等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报, 2016, 35(2): 284-296 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404018.htm

    Zhang Jun, Yin Kunlong, Wang Jiajia, et al. Evaluation of Landslide Susceptibility for Wanzhou District of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 284-296 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404018.htm
    [28]
    Pradhan B, Lee S. Regional Landslide Susceptibility Analysis Using Back-Propagation Neural Network Model at Cameron Highland, Malaysia[J]. Landslides, 2010, 7(1): 13-30 doi: 10.1007/s10346-009-0183-2
    [29]
    Jiang Weiguo, Rao Pingzeng, Cao Ran, et al. Comparative Evaluation of Geological Disaster Susceptibility Using Multi-regression Methods and Spatial Accuracy Validation[J]. Journal of Geographical Sciences, 2017, 27(4): 439-462 doi: 10.1007/s11442-017-1386-4
    [30]
    高克昌, 崔鹏, 赵纯勇, 等. 基于地理信息系统和信息量模型的滑坡危险性评价——以重庆万州为例[J]. 岩石力学与工程学报, 2006, 25(5): 991-996 doi: 10.3321/j.issn:1000-6915.2006.05.020

    Gao Kechang, Cui Peng, Zhao Chunyong, et al. Landslide Hazard Evaluation of Wanzhou Based on GIS Information Value Method in the Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 991-996 doi: 10.3321/j.issn:1000-6915.2006.05.020
    [31]
    牛全福, 程维明, 兰恒星, 等. 基于信息量模型的玉树地震次生地质灾害危险性评价[J]. 山地学报, 2011, 29(2): 243-249 doi: 10.3969/j.issn.1008-2786.2011.02.014

    Niu Quanfu, Cheng Weiming, Lan Henxing, et al. Susceptibility Assessment of Secondary Geological Disaster Based on Information Value Methodology for Yushu Earthquake Region[J]. Journal of Mountain Science, 2011, 29(2): 243-249 doi: 10.3969/j.issn.1008-2786.2011.02.014
    [32]
    武雪玲, 杨经宇, 牛瑞卿. 一种结合SMOTE和卷积神经网络的滑坡易发性评价方法[J]. 武汉大学学报·信息科学版, 2020, 45(8): 1 223-1 232 doi: 10.13203/j.whugis20200127

    Wu Xueling, Yang Jingyu, Niu Ruiqing. A Landslide Susceptibility Assessment Method Using SMOTE and Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1 223-1 232 doi: 10.13203/j.whugis20200127
    [33]
    徐胜华, 刘纪平, 王想红, 等. 熵指数融入支持向量机的滑坡灾害易发性评价方法——以陕西省为例[J]. 武汉大学学报·信息科学版, 2020, 45(8): 1 214-1 222 doi: 10.13203/j.whugis20200109

    Xu Shenghua, Liu Jiping, Wang Xianghong, et al. Landslide Susceptibility Assessment Method Incorporating Index of Entropy Based on Support Vector Machine: A Case Study of Shaanxi Province[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1 214-1 222 doi: 10.13203/j.whugis20200109
  • Related Articles

    [1]HUANG Motao, OUYANG Yongzhong, BIAN Shaofeng, LI Shanshan, LI Mingsan, LU Xiuping, WANG Weiping, DONG Chao, TANG Minqiang, HONG Lidan, HOU Guangchao. Analysis and Reflections on the Development of Underwater Gravity-Aided Inertial Navigation Technology in the United States and Russia[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 1977-1991. DOI: 10.13203/j.whugis20240228
    [2]LI Qingquan, CHEN Ruizhe, TU Wei, CHEN Zhipeng, ZHANG Bochen, YAN Aiguo, YIN Pengcheng. Real-Time Vision-Based Deformation Measurement of Long-Span Bridge with Inertial Sensors[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1834-1843. DOI: 10.13203/j.whugis20230006
    [3]WU Yanxiong, TENG Yuntian, WU Qiong, XU Xing, ZHANG Bing. Error Correction Model and Uncertainty Analysis of the Shipborne Absolute Gravity Measurement System[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 492-500. DOI: 10.13203/j.whugis20190412
    [4]ZHA Feng, HE Hongyang, LI Zhiwei, LI Jingshu. A SINS Initial Alignment Method Using Improved Parameter Identification[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 974-979. DOI: 10.13203/j.whugis20180312
    [5]GUAN Bin, SUN Zhongmiao, WU Fumei, LIU Xiaogang. Influence of Horizontal Disturbing Gravity on Position Error in Inertial Navigation Systems[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1474-1481. DOI: 10.13203/j.whugis20160006
    [6]QIN Fangjun, LI An, XU Jiangning. Analysis of Errors of Rotating Modulation INS Effected by Angular Motion of Vehicle[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 831-833.
    [7]QIN Fangjun, XU Jiangning, LI An. A New Calculative Method for Gyro-Free Inertial Navigation System Using 9Accelerometers[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 278-281.
    [8]OUYANG Yongzhong, LU Xiuping, HUANG Motao, ZHAI Guojun. An Integrated Method for Compensating the Systematic Errors of Marine and Airborne Measurements from L&R Gravimeter[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5): 625-629.
    [9]JIN Jihang, BIAN Shaofeng. Analysis of Inertial Navigation System Positioning Error Caused by Gravity Disturbance[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 30-32.
    [10]YANG Tao, WANG Wei, ZHU Zhiqin. Analysis and Verification of Time Synchronization Error in GPS/SINS Integrated System[J]. Geomatics and Information Science of Wuhan University, 2009, 34(10): 1181-1184.

Catalog

    Article views (1381) PDF downloads (236) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return