留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GIS支持下应用PSO-SVM模型预测滑坡易发性

武雪玲 沈少青 牛瑞卿

武雪玲, 沈少青, 牛瑞卿. GIS支持下应用PSO-SVM模型预测滑坡易发性[J]. 武汉大学学报 ● 信息科学版, 2016, 41(5): 665-671. doi: 10.13203/j.whugis20130566
引用本文: 武雪玲, 沈少青, 牛瑞卿. GIS支持下应用PSO-SVM模型预测滑坡易发性[J]. 武汉大学学报 ● 信息科学版, 2016, 41(5): 665-671. doi: 10.13203/j.whugis20130566
WU Xueling, SHEN Shaoqing, NIU Ruiqing. Landslide Susceptibility Prediction Using GIS and PSO-SVM[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 665-671. doi: 10.13203/j.whugis20130566
Citation: WU Xueling, SHEN Shaoqing, NIU Ruiqing. Landslide Susceptibility Prediction Using GIS and PSO-SVM[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 665-671. doi: 10.13203/j.whugis20130566

GIS支持下应用PSO-SVM模型预测滑坡易发性

doi: 10.13203/j.whugis20130566
基金项目: 国家自然科学基金(41501470);国土资源部城市土地资源监测与仿真重点实验室开放基金(KF-2015-01-006);资源与环境信息系统国家重点实验室开放基金。
详细信息
    作者简介:

    武雪玲,博士,副教授,现主要从事滑坡灾害预测预报研究。snowforesting@163.com

    通讯作者: 沈少青,博士,工程师。s_s_q@126.com
  • 中图分类号: P208;P237.9

Landslide Susceptibility Prediction Using GIS and PSO-SVM

Funds: The National Natural Science Foundation of China, No.41501470; Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, the Ministry of Land and Resources, No.KF-2015-01-006; State Key Laboratory of Resources and Environmental Information System.
  • 摘要: 滑坡灾害易发性预测是滑坡监测、预警与评估的关键技术。如何有效地选取评价因子和构建预测模型是滑坡灾害定量预测研究中的难题。本文以三峡库区长江干流岸坡作为研究区,通过地形、地质和遥感等多源数据融合,提取滑坡孕灾环境和诱发因素的信息作为评价因子。在此基础上,针对滑坡灾害的非线性和不确定性特征,采用粒子群算法对支持向量机模型参数进行全局寻优,构建粒子群算法(particle swarm optimization, PSO)-支持向量机(support vector machine, SVM)模型,定量预测滑坡易发性。最后通过分类精度比较分析基于格网单元和对象单元的滑坡易发性预测精度,结果表明,基于对象单元的PSO-SVM预测精度较高,其曲线下面积为0.841 5,Kappa系数为0.849 0,预测结果与野外实际调查情况较为一致,可为三峡库区滑坡防灾减灾工作提供参考。
  • [1] Chen Deji, Man Zuowu. The Research and Demonstration of Some Major Geological Problems of Three Gorges Project[J]. Engineering Sciences, 2011, 13(7):43-50(陈德基, 满作武. 三峡工程几个重大地质问题的研究与论证[J]. 中国工程科学, 2011, 13(7):43-50)
    [2] Zheng Shouren. Some Considerations on Trial Impoundment Operation of Three Gorges Project at 175 m Water Level[J]. Yangtze River, 2010, 41(8):1-4(郑守仁. 三峡工程试验性蓄水175 m水位运行的相关问题[J]. 人民长江, 2010, 41(8):1-4)
    [3] Huang S, Luo L. Stability Analysis and Results of the Landslide Monitoring Datum in the Three Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2014,39(3):367-372(黄声享, 罗力. 三峡库区滑坡监测基准的稳定性分析及结果[J]. 武汉大学学报·信息科学版, 2014,39(3):367-372)
    [4] He S W, Pan P, Dai L, et al. Application of Kernel-based Fisher Discriminant Analysis to Map Landslide Susceptibility in the Qinggan River Delta, Three Gorges, China[J]. Geomorphology, 2012, 171/172:30-41
    [5] Niethammer U, James M R, Rothmund S, et al. UAV-based Remote Sensing of the Super-Sauze Landslide:Evaluation and results[J]. Eng Geol, 2012, 128:2-11
    [6] Gong J H, Yue Y J, Zhu J, et al. Impacts of the Wenchuan Earthquake on the Chaping River Upstream Channel Change[J]. Int J Remote Sens, 2012, 33(12):3907-3929
    [7] Pradhan B. Landslide Susceptibility Mapping of a Catchment Area Using Frequency Ratio, Fuzzy Logic and Multivariate Logistic Regression Approaches[J]. J Indian Soc Remote Sens, 2010,38(2):301-320
    [8] Zare M, Pourghasemi H R, Vafakhah M, et al. Landslide Susceptibility Mapping at Vaz Watershed (Iran) Using an Artificial Neural Network Model:A Comparison Between Multilayer Perceptron (MLP) and Radial Basic Function (RBF) Algorithms[J]. Arab J Geosci, 2013, 6(8):2873-2888
    [9] Bui D T, Lofman O, Revhaug I, et al. Landslide Susceptibility Analysis in the Hoa Binh Province of Vietnam Using Statistical Index and Logistic Regression[J]. Nat Hazards, 2011, 59:1413-1444
    [10] Wu Xueling, Ren Fu, Niu Ruiqing. Spatial Intelligent Prediction of Landslide Hazard Based on Multi-source Data in Three Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2013,38(8):963-968(武雪玲, 任福, 牛瑞卿. 多源数据支持下的三峡库区滑坡灾害空间智能预测[J]. 武汉大学学报·信息科学版, 2013,38(8):963-968)
    [11] Pradhan B. A Comparative Study on the Predictive Ability of the Decision Tree, Support Vector Machine and Neuro-Fuzzy Models in Landslide Susceptibility Mapping Using GIS[J]. Comput Geosci, 2013, 51:350-365
    [12] Wu Xueling, Ren Fu, Niu Ruiqing, et al. Landslide Spatial Prediction Based on Slope Units and Support Vector Machines[J]. Geomatics and Information Science of Wuhan University, 2013,38(12):1499-1503(武雪玲, 任福, 牛瑞卿, 等. 斜坡单元支持下的滑坡易发性评价支持向量机模型[J]. 武汉大学学报·信息科学版, 2013,38(12):1499-1503)
    [13] Xu C, Dai F C, Xu X W, et al. GIS-Based Support Vector Machine Modeling of Earthquake-Triggered Landslide Susceptibility in the Jianjiang River Watershed, China[J]. Geomorphology, 2012, 145:70-80
    [14] Ballabio C, Sterlacchini S. Support Vector Machines for Landslide Susceptibility Mapping:The Staffora River Basin Case Study, Italy[J]. Math Geosci, 2012, 44:47-70
    [15] Vapnik V. Nature of Statistical Learning Theory[M]. New York:Wiley, 1995
    [16] Yao X,Tham L G, Dai F C. Landslide Susceptibility Mapping Based on Support Vector Machine:A Case Study on Natural Slopes of Hong Kong, China[J]. Geomorphology, 2008, 101:572-582
    [17] Wu X, Ren F,Niu R. Landslide Susceptibility Assessment Using Object Mapping Units, Decision Tree, and Support Vector Machine Models in the Three Gorges of China[J]. Environ Earth Sci, 2014, 71:4725-4738
    [18] Kennedy J,Eberhart R C. Particle Swarm Optimization[C]. IEEE Int Conf Neural Netw, New York, 1995
    [19] Pradhan B, Lee S. Landslide Susceptibility Assessment and Factor Effect Analysis:Backpropagation Artificial Neural Networks and Their Comparison with Frequency Ratio and Bivariate Logistic Regression Modeling[J]. Environ Modell Softw, 2010, 25:747-759
    [20] Nandi A. A Application of Logistic Regression Model for Slope Instability Prediction in Cuyahoga River Watershed, Ohio, USA[J]. Georisk, 2008, 2(1):16-27
  • [1] 何朝阳, 许强, 巨能攀, 解明礼.  滑坡实时监测预警模型调度算法优化研究 . 武汉大学学报 ● 信息科学版, 2021, 46(7): 970-982. doi: 10.13203/j.whugis20200314
    [2] 陈涛, 钟子颖, 牛瑞卿, 刘桐, 陈胜云.  利用深度信念网络进行滑坡易发性评价 . 武汉大学学报 ● 信息科学版, 2020, 45(11): 1809-1817. doi: 10.13203/j.whugis20190144
    [3] 丁超, 冯光财, 周玉杉, 王会强, 杜亚男, 陈晨月.  尼泊尔地震触发滑坡识别和雪崩形变分析 . 武汉大学学报 ● 信息科学版, 2018, 43(6): 847-853, 950. doi: 10.13203/j.whugis20160031
    [4] 刘渊博, 牛瑞卿, 于宪煜, 张凯翔.  旋转森林模型在滑坡易发性评价中的应用研究 . 武汉大学学报 ● 信息科学版, 2018, 43(6): 959-964. doi: 10.13203/j.whugis20160132
    [5] 刘坚, 李树林, 陈涛.  基于优化随机森林模型的滑坡易发性评价 . 武汉大学学报 ● 信息科学版, 2018, 43(7): 1085-1091. doi: 10.13203/j.whugis20160515
    [6] 段功豪, 牛瑞卿, 彭令, 付杰.  诱发因素影响下的滑坡参数优化预测模型研究 . 武汉大学学报 ● 信息科学版, 2017, 42(4): 531-536. doi: 10.13203/j.whugis20140913
    [7] 段功豪, 牛瑞卿, 赵艳南, 张凯翔, 咬登魁.  基于动态指数平滑模型的降雨诱发型滑坡预测 . 武汉大学学报 ● 信息科学版, 2016, 41(7): 958-962. doi: 10.13203/j.whugis20140276
    [8] 孟成, 彭明军, 鄂栋臣, 黄炜.  一种可动态修正的建设用地预测方法 . 武汉大学学报 ● 信息科学版, 2014, 39(1): 95-99.
    [9] 彭令, 牛瑞卿, 赵艳南, 邓清禄.  基于核主成分分析和粒子群优化支持向量机的滑坡位移预测 . 武汉大学学报 ● 信息科学版, 2013, 38(2): 148-152,161.
    [10] 武雪玲, 任福, 牛瑞卿.  多源数据支持下的三峡库区滑坡灾害空间智能预测 . 武汉大学学报 ● 信息科学版, 2013, 38(8): 963-968.
    [11] 张昊, 王琪洁, 朱建军, 张晓红.  对钱德勒参数进行时变修正的CLS+AR模型在极移预测中的应用 . 武汉大学学报 ● 信息科学版, 2012, 37(3): 286-289.
    [12] 李子阳, 郭丽, 顾冲时.  大坝监测资料的时变Kalman预测模型 . 武汉大学学报 ● 信息科学版, 2010, 35(8): 991-995.
    [13] 张正禄, 汪宏晨, 邓勇, 谢年生.  滑坡变形分析与预报的新方法 . 武汉大学学报 ● 信息科学版, 2009, 34(12): 1387-1389.
    [14] 张绪冰, 关泽群, 虞欣, 胡守庚.  一种结合整型最佳谱间预测与SPIHT的MODIS影像无损压缩算法 . 武汉大学学报 ● 信息科学版, 2009, 34(3): 304-307.
    [15] 张昆, 张松林, 刘祖强, 杨红.  滑坡变形的三维可视化研究 . 武汉大学学报 ● 信息科学版, 2006, 31(9): 795-798.
    [16] 王晖, 卢健.  基于预测的边缘检测方法 . 武汉大学学报 ● 信息科学版, 2005, 30(1): 23-26.
    [17] 潘国荣.  基于时间序列分析的动态变形预测模型研究 . 武汉大学学报 ● 信息科学版, 2005, 30(6): 483-487.
    [18] 曾旭平.  GPS滑坡高程监测的数据处理问题 . 武汉大学学报 ● 信息科学版, 2004, 29(3): 201-204.
    [19] 刘耀林, 刘艳芳, 张玉梅.  基于灰色-马尔柯夫链预测模型的耕地需求量预测研究 . 武汉大学学报 ● 信息科学版, 2004, 29(7): 575-579,596.
    [20] 万幼川, 李植生, 梁小民, 刘良明.  湖泊水质预测模型的建立及其应用 . 武汉大学学报 ● 信息科学版, 1996, 21(4): 375-381.
  • 加载中
计量
  • 文章访问数:  1720
  • HTML全文浏览量:  113
  • PDF下载量:  386
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-25
  • 刊出日期:  2016-05-05

GIS支持下应用PSO-SVM模型预测滑坡易发性

doi: 10.13203/j.whugis20130566
    基金项目:  国家自然科学基金(41501470);国土资源部城市土地资源监测与仿真重点实验室开放基金(KF-2015-01-006);资源与环境信息系统国家重点实验室开放基金。
    作者简介:

    武雪玲,博士,副教授,现主要从事滑坡灾害预测预报研究。snowforesting@163.com

    通讯作者: 沈少青,博士,工程师。s_s_q@126.com
  • 中图分类号: P208;P237.9

摘要: 滑坡灾害易发性预测是滑坡监测、预警与评估的关键技术。如何有效地选取评价因子和构建预测模型是滑坡灾害定量预测研究中的难题。本文以三峡库区长江干流岸坡作为研究区,通过地形、地质和遥感等多源数据融合,提取滑坡孕灾环境和诱发因素的信息作为评价因子。在此基础上,针对滑坡灾害的非线性和不确定性特征,采用粒子群算法对支持向量机模型参数进行全局寻优,构建粒子群算法(particle swarm optimization, PSO)-支持向量机(support vector machine, SVM)模型,定量预测滑坡易发性。最后通过分类精度比较分析基于格网单元和对象单元的滑坡易发性预测精度,结果表明,基于对象单元的PSO-SVM预测精度较高,其曲线下面积为0.841 5,Kappa系数为0.849 0,预测结果与野外实际调查情况较为一致,可为三峡库区滑坡防灾减灾工作提供参考。

English Abstract

武雪玲, 沈少青, 牛瑞卿. GIS支持下应用PSO-SVM模型预测滑坡易发性[J]. 武汉大学学报 ● 信息科学版, 2016, 41(5): 665-671. doi: 10.13203/j.whugis20130566
引用本文: 武雪玲, 沈少青, 牛瑞卿. GIS支持下应用PSO-SVM模型预测滑坡易发性[J]. 武汉大学学报 ● 信息科学版, 2016, 41(5): 665-671. doi: 10.13203/j.whugis20130566
WU Xueling, SHEN Shaoqing, NIU Ruiqing. Landslide Susceptibility Prediction Using GIS and PSO-SVM[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 665-671. doi: 10.13203/j.whugis20130566
Citation: WU Xueling, SHEN Shaoqing, NIU Ruiqing. Landslide Susceptibility Prediction Using GIS and PSO-SVM[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 665-671. doi: 10.13203/j.whugis20130566
参考文献 (20)

目录

    /

    返回文章
    返回