Citation: | HUANG Motao, OUYANG Yongzhong, BIAN Shaofeng, LI Shanshan, LI Mingsan, LU Xiuping, WANG Weiping, DONG Chao, TANG Minqiang, HONG Lidan, HOU Guangchao. Analysis and Reflections on the Development of Underwater Gravity-Aided Inertial Navigation Technology in the United States and Russia[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 1977-1991. DOI: 10.13203/j.whugis20240228 |
The development of underwater gravity-aided inertial navigation technology in China is coming to a critical period and faces many difficulties and challenges. There are both cognitive problems in research ideas and “stuck neck” problems in key technologies, which require us to concentrate our wisdom and make creative thinking, and to find ways to solve these problems.
First, we clearly define the connotation of gravity-aided navigation technology as the general term for two types of the aided navigation technologies: gravity compensation and gravity correction. Second, we analyze and review the development strategies, planning layout, development ideas, research and development paths, innovation results, test applications and some development trends worthy of attention in this research field in the United States and Russia, summarize the technical characteristics and successful experiences at diffe-rent stages of the research and development process of the two countries.
The characteristics of technological development in the United States include: (1) The demand for gravity compensation has been leading the development of gravity data modelling technology. (2) The demand for gravity compensation has been leading the development of gravity equipment technology. (3) The progress of gravity equipment technology has been promoting the development of gravity correction technology. The technological development characteristics in Russia include: (1) The military requirement has been dominating the development of sea and air gravity equipment technology. (2) The special attention has been paid to the researches on the correction algorithms of inertial navigation system parameter using gravity information. Finally, we compa-ratively analyze the differences and gaps research process between China and the two countries, and put forward five aspects of countermeasure and suggestion based on China's national conditions, involving directional issues such as research ideas, development focus, and priority arrangements.
The purpose is to attract ideas, exchange in-depth, reach consensus, and provide reference for decision-making departments to deploy the next work. Our specific countermeasures and suggestions are: (1) Give priority to the first task of gravity compensation. (2) Urgently promote detail gravity measurements in the key sea areas and gravimeter development for polar region. (3) Focus on the development of nonlinear filtering technology and filtering algorithms for gravity correction. (4) Give priority to the development of practical software-based gravity-aided inertial navigation systems. (5) Strengthen the requirement demonstration and top-level design for gravity-aided inertial navigation.
[1] |
Moryl J. Advanced Submarine Navigation Systems[J]. Sea Technology, 1996, 37(11): 33-39.
|
[2] |
Hays K M, Schmidt R G, Wilson W A, et al. A Submarine Navigator for the 21st Century[C]//IEEE Position Location and Navigation Symposium, Monterey,CA, USA, 2002.
|
[3] |
武凤德,张宗询. 无源重力导航技术发展水平及趋势[C]//惯性技术发展动态发展方向研讨会,中国宜昌,2003.
Wu Fengde, Zhang Zongxun. Development Level and Trend of Passive Gravity Navigation Technology[C]//The Seminar on Development Trend and Direction of Inertial Technology, Yichang, China2003.
|
[4] |
May M B. Gravity Navigation[C]//IEEE Position Location and Navigation Symposium, Orlando, FL, USA, 1978.
|
[5] |
Vajda S, Zorn A. Survey of Existing and Emerging Technologies for Strategic Submarine Navigation[C]//IEEE Position Location and Navigation Symposium, Palm Springs, USA, 1996.
|
[6] |
刘敏, 黄谟涛, 欧阳永忠, 等. 海空重力测量及应用技术研究进展与展望(二): 传感器与测量规划设计技术[J]. 海洋测绘, 2017, 37(3): 1-11.
Liu Min, Huang Motao, Ouyang Yongzhong, et al. Development and Prospect of Air-Sea Gravity Survey and Its Applications, Part Ⅱ: Sensor, Plan and Design of Survey[J]. Hydrographic Surveying and Charting, 2017, 37(3): 1-11.
|
[7] |
付梦印,刘飞,袁书明,等. 水下惯性/重力匹配自主导航综述[J]. 水下无人系统学报,2017,25(1):31-43.
Fu Mengyin, Liu Fei, Yuan Shuming, et al. Review of Undersea Autonomous Inertial-Gravity Matching Navigation[J]. Journal of Unmanned Undersea Systems, 2017,25(1):31-43.
|
[8] |
戴全发, 许厚泽, 许大欣, 等. 基于卫星测高数据的重力匹配导航仿真[J]. 武汉大学学报(信息科学版), 2008, 33(2): 203-207.
Dai Quanfa, Xu Houze, Xu Daxin, et al. Simulation of Gravity Matching Navigation System[J]. Geomatics and Information Science of Wuhan University, 2008, 33(2): 203-207.
|
[9] |
程力, 蔡体菁. 基于模式识别神经网络的重力匹配算法[J]. 东南大学学报(自然科学版), 2007, 37(5): 839-843.
Cheng Li, Cai Tijing. Gravity Matching Algorithm Based on Pattern Recognition Neural Network[J]. Journal of Southeast University (Natural Science Edition), 2007, 37(5): 839-843.
|
[10] |
王文晶. 基于重力和环境特征的水下导航定位方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.
Wang Wenjing. Research on Underwater Navigation and Positioning Method Based on Gravity and Environmental Characteristics[D].Harbin: Harbin Engineering University, 2009.
|
[11] |
肖云, 张锦柏, 曹杰, 等. 多属性决策理论的重力匹配导航适配性分析[J]. 武汉大学学报(信息科学版), 2023, 48(7): 1089-1099.
Xiao Yun, Zhang Jinbai, Jie Ccao, et al. Suitability Analysis of Gravity Matching Navigation Based on Multiple Attribute Decision Making Theory[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1089-1099.
|
[12] |
王志刚, 边少锋. 基于ICCP算法的重力辅助惯性导航[J]. 测绘学报, 2008, 37(2): 147-151.
Wang Zhigang, Bian Shaofeng. ICCP Algorithm for Gravity Aided Inertial Navigation[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(2): 147-151.
|
[13] |
吴太旗, 欧阳永忠, 陆秀平, 等. 重力匹配导航的影响模式分析[J]. 中国惯性技术学报, 2011, 19(5): 559-564.
Wu Taiqi, Ouyang Yongzhong, Lu Xiuping, et al. Analysis on Effecting Mode of Several Essential Factors to Gravity Aided Navigation[J]. Journal of Chinese Inertial Technology, 2011, 19(5): 559-564.
|
[14] |
刘繁明, 姚剑奇, 李艳. 一种骨架提取的海洋重力适配区域局部分析方法[J]. 武汉大学学报(信息科学版), 2014, 39(4): 428-434.
Liu Fanming, Yao Jianqi, Li Yan. Local Analysis Method on the Marine Gravity Matching Area Based on Skeleton Extraction[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 428-434.
|
[15] |
李姗姗, 吴晓平, 田颜锋. 水下重力异常最近等值线迭代匹配算法的改进[J]. 武汉大学学报(信息科学版), 2011, 36(2): 226-230.
Li Shanshan, Wu Xiaoping, Tian Yanfeng. Improvement on the Iterated Closest Contour Point Matching Algorithm Using Underwater Gravity Anomalies[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2):226-230.
|
[16] |
王虎彪. 基于重力异常和重力梯度的水下辅助导航技术研究[D]. 武汉:中国科学院测量与地球研究所,2010.
Wang Hubiao. Research on Underwater Assisted Navigation Technology Based on Gravity Anomaly and Gravity Gradient[D]. Wuhan: Institute of Geodesy and Geophysics, Chinese Academy of Sciences, 2010.
|
[17] |
姚剑奇. 水下重力辅助导航定位方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
Yao Jianqi. Research on Underwater Gravity-Assisted Navigation and Positioning Method[D].Harbin: Harbin Engineering University, 2015.
|
[18] |
铁俊波. 惯性导航重力补偿方法研究[D]. 长沙: 国防科技大学, 2018.
Junbo Tie. Research on Gravity Compensation Method of Inertial Navigation[D].Changsha: National University of Defense Technology, 2018.
|
[19] |
罗凯鑫. 海洋惯性重力辅助导航关键技术研究[D]. 长沙:国防科技大学,2023.
Luo Kaixin. Research on Key Technologies of Ocean Gravity-Aided Inertial Navigation[D]. Changsha: National University of Defense Technology, 2023.
|
[20] |
Kwon J H, Jekeli C. Gravity Requirements for Compensation of Ultra-precise Inertial Navigation[J]. Journal of Navigation, 2005, 58(3): 479-492.
|
[21] |
Nash R. The Estimation and Control of Terrestrial Inertial Navigation System Errors Due to Vertical Deflections[J]. IEEE Transactions on Automatic Control, 1968, 13(4): 329-338.
|
[22] |
Gelb A. Geodetic and Geophysical Uncertainties-Fundamental Limitations on Terrestrial Inertial Navigation[C]//The Control and Flight Dynamics Conference, Pasadena, CA, USA. 1968.
|
[23] |
Jordan S K. Effects of Geodetic Uncertainties on a Damped Inertial Navigation System[J]. IEEE Transactions on Aerospace and Electronic Systems, 1973, AES-9(5): 741-752.
|
[24] |
陆志东, 王晶. 高精度惯性导航系统重力补偿方法[J]. 航空科学技术, 2016, 27(8): 1-6.
Lu Zhidong, Wang Jing. Gravity Compensation Methods for High-Accuracy INS[J]. Aeronautical Science & Technology, 2016, 27(8): 1-6.
|
[25] |
Kasper J F. A Second-Order Markov Gravity Anomaly Model[J]. Journal of Geophysical Research, 1971, 76(32): 7844-7849.
|
[26] |
Jordan S K. Self-Consistent Statistical Models for the Gravity Anomaly, Vertical Deflections, and Undulation of the Geoid[J]. Journal of Geophysical Research, 1972, 77(20): 3660-3670.
|
[27] |
Chatfield A B, Bennett M M, Chen T. Effect of Gravity Model Inaccuracy on Navigation Performance[J]. AIAA Journal, 1975, 13(11): 1494-1501.
|
[28] |
Chatfield A B. Fundamentals of High Accuracy Inertial Navigation[M]. Reston, VA: American Institute of Aeronautics and Astronautics, 1997.
|
[29] |
Kwon J H. Gravity Compensation Methods for Precision[C]//The 60th Institute of Naligation, Dayton, OH, USA, 2004.
|
[30] |
黄谟涛. 海洋重力场测定及其应用[M]. 北京: 测绘出版社, 2005.
Huang Motao. Determination and Application of Marine Gravity Field[M]. Beijing: Sino Maps Press, 2005.
|
[31] |
皮舍霍诺夫ВГ, 斯捷巴诺夫ОА, 博洛廷ЮВ.等. 地球重力场参数现代测量方法与设备[M]. 北京: 国防工业出版社, 2022.
Лещехонов В Г. Стеланов О А, Болотин Ю В,et al. Совеменные Методы и Сердства Измерения Параметров Гравитационного Поля Земли[M]. Beijing: National Defense Industry Press, 2022.
|
[32] |
Affleck C A, Jircitano A. Passive Gravity Gradiometer Navigation System[C]//IEEE Symposium on Position Location and Navigation, Las Vegas, USA, 1990.
|
[33] |
Moryl J, Rice H, Shinners S. The Universal Gravity Module for Enhanced Submarine Navigation[C]//IEEE Position Location and Navigation Symposium, Palm Springs, USA, 1996.
|
[34] |
Rice H, Mendelsohn L, Aarons R, et al. Next Generation Marine Precision Navigation System[C]//IEEE Position Location and Navigation Symposium , San Diego, USA, 2002.
|
[35] |
Jircitano A, Dosch D. Gravity Aided Inertial Navigation System (GAINS)[C]. The 47th Institute of Navigation, Williamsburg, VA, 1991.
|
[36] |
Doucet A, Freitas N, Gordon N. Sequential Monte Carlo Methods in Practice[M]. New York: Springer, 2001.
|
[37] |
Canciani A, Raquet J. Absolute Positioning Using the Earth’s Magnetic Anomaly Field[J]. Navigation, 2016, 63(2): 111-126.
|
[38] |
Canciani A, Raquet J. Airborne Magnetic Anomaly Navigation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1): 67-80.
|
[39] |
Lee T N, Canciani A J. MagSLAM: Aerial Simultaneous Localization and Mapping Using Earth’s Magnetic Anomaly Field[J]. Navigation, 2020, 67(1): 95-107.
|
[40] |
欧阳明达, 杨元喜. 改进粒子滤波的水下重力匹配导航仿真与实验[J]. 哈尔滨工程大学学报, 2022, 43(10): 1514-1521.
Ouyang Mingda, Yang Yuanxi. Underwater Gravity Matching Navigation Simulation and Experiment Based on the Improved Particle Filtering Algorithm[J]. Journal of Harbin Engineering University, 2022, 43(10): 1514-1521.
|
[41] |
刘金钊, 柳林涛, 梁星辉, 等. 基于实测重力异常和地形数据确定重力梯度的研究[J]. 地球物理学报, 2013, 56(7): 2245-2256.
Liu Jinzhao, Liu Lintao, Liang Xinghui, et al. Based on Measured Gravity Anomaly and Terrain Data to Determine the Gravity Gradients[J]. Chinese Journal of Geophysics, 2013, 56(7): 2245-2256.
|