WANG Zhengtao, ZHAN Wenzhen, DING Jiawei, LIU Meiqin. Numerical Simulation of Dynamo Model with the Earth's Axis Precession[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 501-507. DOI: 10.13203/j.whugis20190298
Citation: WANG Zhengtao, ZHAN Wenzhen, DING Jiawei, LIU Meiqin. Numerical Simulation of Dynamo Model with the Earth's Axis Precession[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 501-507. DOI: 10.13203/j.whugis20190298

Numerical Simulation of Dynamo Model with the Earth's Axis Precession

Funds: 

The National Natural Science Foundation of China 41974007

The National Natural Science Foundation of China 41774019

The National Natural Science Foundation of China 41474018

The National Natural Science Foundation of China 41274032

the Open Research Fund Program from Key Laboratory of Earth Observation and Geospatial Information Science of NASG 201812

More Information
  • Author Bio:

    WANG Zhengtao: WANG zhengtao, PhD, professor, majors in solid geophysics.E-mail: ztwang@whu.edu.cn

  • Received Date: July 23, 2020
  • Published Date: April 04, 2022
  •   Objectives  The Poincaré force related to the precession of Earth's axis is usually omitted in the solution of the dynamo equations as its effects are minimal. But in fact, the period of Earth's axial precession is still a term that is worth considering compared to the period of Earth's magnetic field reversal.
      Methods  This paper compares and analyzes different dynamo models with Ekman number and Rayleigh number by introducing Earth's axis precession velocity with a period of 25 960 years.
      Results  It is found that Earth's axial precession stabilizes the kinetic energy and magnetic energy fluctuation of spherical shell magnetic fluid in a smaller range than the benchmark dynamo, and increases the toroidal kinetic energy of spherical shell magnetic fluid by more than 10%-20%, which leads to significantly accelerated westward drift rate of the magnetic field. Based on the magnetic field strength and magnetic Reynolds number at the core-mantle boundary of those dynamos, it is found that the introduction of the precession item of Earth's axis makes magnetic energy more tend to kinetic energy conversion. And by comparing the core-mantle boundary dipolarity, it is found that the introduction of the precession item will reduce the dipolarity. But for the dynamos in this article, the influence is not strong enough to make it become less Earth-like.
      Conclusions  From the comparison and analysis of the dynamo models, the introduction of Earth's axis precession would possibly change the dynamo model with a small Ekman number to a multipole dominant dynamo model. It can be inferred that the term of Earth's axis precession should be considered in more precise research of the numerical dynamo simulation for more.
  • [1]
    Baron G C. A Discourse on the Revolutions of the Surface of the Globe, and the Changes Thereby Produced in the Animal Kingdom[M]. Philadelphia: Lea&Blanchard, 1831
    [2]
    Glatzmaier G A, Roberts P H. A Three-Dimensional Self-Consistent Computer Simulation of a Geomagnetic Field Reversal[J]. Nature, 1995, 377(6546): 203-209 doi: 10.1038/377203a0
    [3]
    Christensen U R, Aubert J, Hulot G. Conditions for Earth-Like Geodynamo Models[J]. Earth and Planetary Science Letters, 2010, 296(3): 486-496
    [4]
    Kageyama A, Sato T. Computer Simulation of a Magnetohydrodynamic DynamoⅡ[J]. Physics of Plasmas, 1995, 2(5): 1421-1431 doi: 10.1063/1.871485
    [5]
    Kuang W, Bloxham J. An Earth-Like Numerical Dynamo Model[J]. Nature, 1997, 389: 371-374 doi: 10.1038/38712
    [6]
    Stefani F, Albrecht T, Gerbeth G, et al. Towards a Precession Driven Dynamo Experiment[J]. Magnetohydrodynamics, 2014, 51(2): 275-283
    [7]
    邓洪涛. 地球内核与磁场[J]. 武汉大学学报·信息科学版, 2010, 35(7): 854-856 http://ch.whu.edu.cn/article/id/989

    Deng Hongtao. The Inner Core and Geomagnetic Field[J]. Geomatics and Information Science of Wuhan University, 2010, 35(7): 854-856 http://ch.whu.edu.cn/article/id/989
    [8]
    Glatzmaier G A. Introduction to Modelling Convection in Planets and Stars[M]. Princeton: Princeton University Press, 2013
    [9]
    Christensen U R, Aubert J, Cardin P, et al. A Numerical Dynamo Benchmark[J]. Physics of the Earth and Planetary Interiors, 2001, 128(1): 24-34
    [10]
    Thomas G, Johannes W, Ankit B, et al. Welcome—Magic 5.6 Documentation[EB/OL]. [2019-3-29]. https://magic-sph.github.io/
    [11]
    Lauren W, Jessica I. Reconciling the Hemispherical Structure of Earth's Inner Core with Its Super-Rotation[J]. Nature Geoscience, 2011, 4(4): 264-267 doi: 10.1038/ngeo1083
    [12]
    Wicht J. Inner-Core Conductivity in Numerical Dynamo Simulations[J]. Physics of the Earth and Planetary Interiors, 2002, 132(4): 281-302 doi: 10.1016/S0031-9201(02)00078-X
  • Related Articles

    [1]DENG Bo, ZHANG Hui, BAI Jun, DONG Xiujun, JIN Dianqi, JIN Songyan, ZHANG Shaobiao. Hazard Evaluation of the Slope Based on Airborne LiDAR Data in Shenzhen, China[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1377-1391. DOI: 10.13203/j.whugis20220141
    [2]XU Caijun, HE Kefeng. Advancements in Earthquake Cycle Deformation Research Based on Geodetic Observations[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1736-1755. DOI: 10.13203/j.whugis20230304
    [3]XU Caijun, XIONG Wei, LIU Chuanjin. Progress in Studying of 3D Crustal Deformation and Seismic Risk Assessment of the Tibetan Plateau Using Geodetic Observations[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 997-1009. DOI: 10.13203/j.whugis20230126
    [4]XU Caijun, WANG Xiaohang, WEN Yangmao, LI Wei. Progress and Prospects of Seismic Geodetic Determination of Asperities[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1701-1712. DOI: 10.13203/j.whugis20220446
    [5]WANG Jiapei, ZHANG Xinlin, ZHANG Yi, LI Zhongya, HU Minzhang, SHEN Chongyang. Analysis of Gravity Variation and Vertical Crustal Deformation at Wuhan Jiufeng Seismic Station[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 964-971. DOI: 10.13203/j.whugis20220157
    [6]JIANG Ying, LIU Ziwei, ZHANG Xiaotong, ZHANG Lina, WEI Jin. Variation Features of b-Value Before and After the 2021 Maduo Mw 7.4 Earthquake[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 907-915. DOI: 10.13203/j.whugis20220071
    [7]LI Chong, LI Jiancheng, HUANG Ruijin, TAN Li. Discussion of Crustal Flow Beneath the Eastern Tibetan Plateau and Mechanism of the Wenchuan Earthquake[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 810-815. DOI: 10.13203/j.whugis20130655
    [8]Yin Myo Min Htwe, SHEN Wenbin, SUN Rong. Seismic Hazard Assessment in Yangon(Burma) and Its Surrounding Areas[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 463-466.
    [9]GU Guohua, WANG Wuxing, MENG Guojie, XU Yueren. Crustal Movements Before and After the Wenchuan Earthquake as Detected by GPS Observations[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1336-1339.
    [10]WU Yun, SUN Jianzhong, QIAO Xuejun, WANG Hui. Applications of GPS to Current Crust Movements and Monitoring Seismic Precursors[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S1): 79-82,136.
  • Cited by

    Periodical cited type(5)

    1. 郑勇,郭汝梦,刘德川. 川滇主要地震空区危险性的研究现状及思考. 中国科学:地球科学. 2024(11): 3375-3402 .
    2. Yong ZHENG,Rumeng GUO,Dechuan LIU. Present status and prospective on the seismic hazard studies of major seismic gaps in the Sichuan-Yunnan region. Science China Earth Sciences. 2024(11): 3339-3366 .
    3. 王鹏,刘静,刘小利,刘志军. GNSS在地表过程研究中的应用. 武汉大学学报(信息科学版). 2024(12): 2159-2180 .
    4. 许才军,贺克锋. 地震周期形变的大地测量研究进展和展望. 武汉大学学报(信息科学版). 2023(11): 1736-1755 .
    5. 王守文,季灵运,朱良玉,刘传金. 基于InSAR技术监测2021年青海玛多M_w7.4级地震同震形变场与断层滑动. 地球科学与环境学报. 2022(06): 1016-1026 .

    Other cited types(2)

Catalog

    Article views (533) PDF downloads (48) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return