GU Guohua, WANG Wuxing, MENG Guojie, XU Yueren. Crustal Movements Before and After the Wenchuan Earthquake as Detected by GPS Observations[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1336-1339.
Citation: GU Guohua, WANG Wuxing, MENG Guojie, XU Yueren. Crustal Movements Before and After the Wenchuan Earthquake as Detected by GPS Observations[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1336-1339.

Crustal Movements Before and After the Wenchuan Earthquake as Detected by GPS Observations

Funds: 国家科技支撑计划重点资助项目(2006BAC01B02-02-05);地震预测研究所基本科研业务专项资助项目(0207690239)
More Information
  • Received Date: September 17, 2009
  • Revised Date: September 17, 2009
  • Published Date: November 04, 2009
  • The methods of both best fits by trend surfaces and statistics are used in the aim of looking for the epicentral area from the strain accumulations in the regional network observed from 1999 to 2007 before the Wenchuan Earthquake. Besides the epicentral area of the Kunlun Mountain earthquake of M8.1 in 2001,the results of best fits by trend surfaces of the strain accumulations from 2004 to 2007 in the regional network before the earthquake show that the Wenchuan earthquake occurred at the eastern fringe of a region of large area and large accumulations of the first shear strains and also at the northeastern fringe of a smaller region with significant areal compression accumulations. The statistics of the accumulations of the strain components show that they also show anomalous distribution patterns in this region and its neighborhood with increasing accumulations of both shear strain and areal compression. Positioning solutions of single epochs for continuous GPS observations in or around the earthquake area before the event show that there were eminent precursory crustal movements,particularly vertical movements.
  • Related Articles

    [1]ZHAO Haitao, ZHANG Bing, ZUO Zhengli, CHEN Zhengchao. Boresight Misalignment and Position Offset Calibration of Push-broom Hyperspectral Sensor Integrated POS System[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 973-977.
    [2]LOU Liangsheng, LIU Siwei, ZHOU Yu. Accuracy Analysis of Airborne InSAR System[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 63-67.
    [3]CHEN Chuanfa, YUE Tianxiang, ZHANG Zhaojie. An Algorithm for Solving High Accuracy Surface Modeling[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 365-368.
    [4]YUAN Xiuxiao, WU Zhenli, JI Shunping. Theoretical Accuracy Effect on Vertical Parallax of Relativities between Exterior Orientation Elements Obtained Via POS[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 889-893.
    [5]LIU Guolin, HAO Xiaoguang, XUE Huaiping, DU Zhixing. Related Analysis of Effecting Factors of Height Measurement Accuracy of InSAR[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 55-58.
    [6]YUAN Xiuxiao, YANG Fen, ZHAO Qing, MING Yang. Boresight Misalignment Calibration of Integrated DGPS/IMU System[J]. Geomatics and Information Science of Wuhan University, 2006, 31(12): 1039-1043.
    [7]UAN Xiuxiao, FU Jianhong, ZUO Zhengli, SUN Hongxing. Accuracy Analysis of Direct Georeferencing by Airborne Position and Orientation System in Aerial Photogrammetry[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 847-850.
    [8]Yuan Xiuxiao. Theoretical Accuracy for GPS-Supported Bundle Adjustment[J]. Geomatics and Information Science of Wuhan University, 1998, 23(4): 394-398.
    [9]Li Deren Peng, Meiyun, Zhang Juqing. Accuracy Indicators for Estimating Positional Error of Area Primitives in GIS[J]. Geomatics and Information Science of Wuhan University, 1996, 21(2): 134-138,144.
    [10]Wu Junchang. Accuracy Estimation of Traverse Points for the Correlated Adjustment[J]. Geomatics and Information Science of Wuhan University, 1986, 11(3): 74-86.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return