Citation: | CHAI Huabin, YAN Chao, ZOU Youfeng, CHEN Zhengchao. Land Cover Classification of Remote Sensing Image of Hubei Province by Using PSP Net[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1224-1232. DOI: 10.13203/j.whugis20190296 |
[1] |
李镇, 张岩, 杨松, 等. QuickBird影像目视解译法提取切沟形态参数的精度分析[J]. 农业工程学报, 2014, 30(20): 179-186 doi: 10.3969/j.issn.1002-6819.2014.20.022
Li Zhen, Zhang Yan, Yang Song, et al. Error Assessment of Extracting Morphological Parameters of Bank Gullies by Manual Visual Interpretation Based on QuickBird Imagery[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(20): 179-186 doi: 10.3969/j.issn.1002-6819.2014.20.022
|
[2] |
王志杰. 基于遥感影像分割单元的土地利用变化快速检测方法[J]. 南京林业大学学报(自然科学版), 2015, 39(3): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-NJLY201503001.htm
Wang Zhijie. Rapid Detection Method for Land Use Change Based on Remote Sensing Images Segmentation Units[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2015, 39(3): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-NJLY201503001.htm
|
[3] |
黄利文, 毛政元, 李二振, 等. 基于几何概率的聚类分析方法及其在遥感影像分类中的应用[J]. 中国图像图形学报, 2007, 12(4): 633-639 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200704013.htm
Huang Liwen, Mao Zhengyuan, Li Erzhen, et al. The Cluster Analysis Approaches Based on Geometric Probability and Its Application in the Classification of Remotely Sensed Images[J]. Journal of Image and Graphics, 2007, 12(4): 633-639 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200704013.htm
|
[4] |
唐韵玮, 张景雄. 遥感影像土地覆盖分类的多点地统计学方法[J]. 武汉大学学报·信息科学版, 2014, 39(5): 546-550 doi: 10.13203/j.whugis20130023
Tang Yunwei, Zhang Jingxiong. Land Cover Classification of Remotely Sensed Imagery Using Multiple-Point Geostatistics[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 546-550 doi: 10.13203/j.whugis20130023
|
[5] |
林怡, 刘冰, 陈映鹰, 等. 多特征差分核支持向量机遥感影像变化检测方法[J]. 武汉大学学报·信息科学版, 2013, 38(8): 978-982 http://ch.whu.edu.cn/article/id/2731
Lin Yi, Liu Bing, Chen Yingying, et al. Change Detection Method Based on Multi-feature Different Kernel SVM for Remote Sensing Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 978-982 http://ch.whu.edu.cn/article/id/2731
|
[6] |
张晓贺, 翟亮, 张继贤, 等. AdaTree算法在遥感影像分类中的应用[J]. 武汉大学学报·信息科学版, 2013, 38(12): 1 460-1 463 http://ch.whu.edu.cn/article/id/2830
Zhang Xiaohe, Zhai Liang, Zhang Jixian, et al. Application of AdaTree Algorithm to Remote Sensing Image Classification[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1 460-1 463 http://ch.whu.edu.cn/article/id/2830
|
[7] |
Turner D P, Ritts W D, Cohen W B, et al. Scaling Gross Primary Production (GPP) Over Boreal and Deciduous Forest Landscapes in Support of MODIS GPP Product Validation[J]. Remote Sensing of Environment, 2003, 88(3): 256-270 doi: 10.1016/j.rse.2003.06.005
|
[8] |
孟庆祥, 段学琳. 基于DCNN的高分辨率遥感影像场景分类[J]. 华中师范大学学报(自然科学版), 2019, 53(4): 568-574 https://www.cnki.com.cn/Article/CJFDTOTAL-HZSZ201904017.htm
Meng Qingxiang, Duan Xuelin. High Resolution Remote Sensing Image Scene Classification Based on DCNN[J]. Journal of Central China Normal University(Natural Sciences), 2019, 53(4): 568-574 https://www.cnki.com.cn/Article/CJFDTOTAL-HZSZ201904017.htm
|
[9] |
张佳, 谢玉凤. 高光谱遥感影像分类方法综述[J]. 安徽农学通报, 2017, 23(14): 155-165 doi: 10.3969/j.issn.1007-7731.2017.14.063
Zhang Jia, Xie Yufeng. Summary of Hyperspectral Remote Sensing Image Classification Methods[J]. Anhui Agricultural Science Bulletin, 2017, 23(14): 155-165 doi: 10.3969/j.issn.1007-7731.2017.14.063
|
[10] |
王斌, 范冬林. 深度学习在遥感影像分类与识别中的研究进展综述[J]. 测绘通报, 2019(2): 99-102 https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201902021.htm
Wang Bin, Fan Donglin. Research Progress of Deep Learning in Classification and Recognition of Remote Sensing Images[J]. Bulletin of Surveying and Mapping, 2019(2): 99-102 https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201902021.htm
|
[11] |
Bhosle K, Musande V. Evaluation of Deep Learning CNN Model for Land Use Land Cover Classification and Crop Identification Using Hyperspectral Remote Sensing Images[J]. Journal of the Indian Society of Remote Sensing, 2019, 47 (11): 1 949-1 958 doi: 10.1007/s12524-019-01041-2
|
[12] |
Boualleg Y, Farah M, Farah I R. Remote Sensing Scene Classification Using Convolutional Features and Deep Forest Classifier[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(12): 1 944-1 948 doi: 10.1109/LGRS.2019.2911855
|
[13] |
石斌斌, 何海清, 游琦, 一种多尺度全卷积神经网络驱动的遥感影像修复方法[J]. 测绘地理信息, 2018, 43(3): 124-126 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201803032.htm
Shi Binbin, He Haiqing, You Qi. A Method of Multi-scale Total Convolution Network Driven Remote Sensing Image Repair[J]. Journal of Geomatics, 2018, 43(3): 124-126 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201803032.htm
|
[14] |
付伟锋, 邹维宝. 深度学习在遥感影像分类中的研究进展[J]. 计算机应用研究, 2018, 35(12): 3 521-3 524 https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201812001.htm
Fu Weifeng, Zou Weibao. Review of Remote Sensing Image Classification Based on Deep Learning[J]. Application Research of Computers, 2018, 35(12): 3 521-3 524 https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201812001.htm
|
[15] |
张春雷. 基于军事飞机图像结合FCN的目标检测技术应用[J]. 理论与算法, 2019 (10): 53-55 https://www.cnki.com.cn/Article/CJFDTOTAL-WDZC201910023.htm
Zhang Chunlei. Application of Target Detection Technology Based on Military Aircraft Image Combined with FCN[J]. Theory and Algorithm, 2019 (10): 53-55 https://www.cnki.com.cn/Article/CJFDTOTAL-WDZC201910023.htm
|
[16] |
杨建宇, 周振旭, 杜贞容, 等. 基于SegNet语义模型的高分辨率遥感影像农村建设用地提取[J]. 农业工程学报, 2019, 35(5): 251-258 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201905031.htm
Yang Jianyu, Zhou Zhenxu, Du Zhenrong, et al. Rural Construction Land Extraction from High Spatial Resolution Remote Sensing Image Based on SegNet Semantic Segmentation Model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(5): 251-258 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201905031.htm
|
[17] |
张兵. 遥感大数据时代与智能信息提取[J]. 武汉大学学报·信息科学版, 2018, 43(12): 1 861-1 871 doi: 10.13203/j.whugis20180172
Zhang Bing. Remote Sensing Big Data Era and Intelligent Information Extraction[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1 861-1 871 doi: 10.13203/j.whugis20180172
|
[18] |
蔡博文, 王树根, 王磊, 等. 基于深度学习模型的城市高分辨率遥感影像不透水面提取[J]. 地球信息科学学报, 2019, 21(9): 1 420-1 429 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201909013.htm
Cai Bowen, Wang Shugen, Wang Lei, et al. Extraction of Urban Impervious Surface from High-Resolution Remote Sensing Imagery Based on Deep Learning[J]. Journal of Geo-information Science, 2019, 21(9): 1 420-1 429 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201909013.htm
|
[19] |
刘万军, 梁雪剑, 曲海成. 不同池化模型的卷积神经网络学习性能研究[J]. 中国图象图形学报, 2016, 21(9): 1 178-1 190 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201609007.htm
Liu Wanjun, Liang Xuejian, Qu Haicheng. Learning Performance of Convolutional Neural Networks with Different Pooling Models[J]. Journal of Image and Graphics, 2016, 21(9): 1 178-1 190 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201609007.htm
|
[20] |
Takeki A, Trinh T T, Yoshihashi R, et al. Combining Deep Features for Object Detection at Various Scales: Finding Small Birds in Landscape Images[J]. IPSJ Transactions on Computer Vision and Applications, 2016, 8(1): 5-7 doi: 10.1186/s41074-016-0006-z
|
[21] |
冯锦, 李玉惠. 基于卷积神经网络的车型颜色综合识别[J]. 电子科技, 2018, 31(6): 89-92 https://www.cnki.com.cn/Article/CJFDTOTAL-DZKK201806024.htm
Feng Jin, Li Yuhui. Synthetic Recognition of Vehicle Color Based on Convolution Neural Network[J]. Electronic Science and Technology, 2018, 31(6): 89-92 https://www.cnki.com.cn/Article/CJFDTOTAL-DZKK201806024.htm
|
[22] |
赵忠明, 高连如, 陈东, 等. 卫星遥感及图像处理平台发展[J]. 中国图象图形学报, 2019, 24(12): 2 098-2 110 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201912003.htm
Zhao Zhongming, Gao Lianru, Chen Dong, et al. Satellite Remote Sensing and Image Processing Platform Development[J]. Journal of Image and Graphics, 2019, 24(12): 2 098-2 110 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201912003.htm
|
[23] |
柳海鹰, 高吉喜, 李政海. 土地覆盖及土地利用遥感研究进展[J]. 国土资源遥感, 2001, 13(4) : 7-12 doi: 10.3969/j.issn.1001-070X.2001.04.002
Liu Haiying, Gao Jixi, Li Zhenghai. The Advances in the Application of Remote Sensing Technology to the Study of Land Covering and Land Utilization[J]. Remote Sensing for Land & Resources, 2001, 13(4): 7-12 doi: 10.3969/j.issn.1001-070X.2001.04.002
|
[24] |
季顺平, 田思琦, 张驰. 利用全空洞卷积神经元网络进行城市土地覆盖分类与变化检测[J]. 武汉大学学报·信息科学版, 2020, 45(2): 233-241 doi: 10.13203/j.whugis20180481
Ji Shunping, Tian Siqi, Zhang Chi. Urban Land Cover Classification and Change Detection Using Fully Atrous Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 233-241 doi: 10.13203/j.whugis20180481
|
[25] |
张策, 臧淑英, 金竺, 等. 基于支持向量机的扎龙湿地遥感分类研究[J]. 湿地科学, 2011, 9(3): 263-269 https://www.cnki.com.cn/Article/CJFDTOTAL-KXSD201103011.htm
Zhang Ce, Zang Shuying, Jin Zhu, et al. Research on Zhalong Wetland Classification Based on Support Vector Machines[J]. Wetland Science, 2011, 9(3): 263-269 https://www.cnki.com.cn/Article/CJFDTOTAL-KXSD201103011.htm
|
[26] |
王海军. AGA-BP模型在遥感影像分类中的应用研究[J]. 计算机测量与控制, 2017, 25(5): 212-214 https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201705058.htm
Wang Haijun. The Application Research of AGA-BP Model in Remote Sensing Image Classification[J]. Computer Measurement and Control, 2017, 25(5): 212-214 https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201705058.htm
|
[1] | GUO Jiachun, LIU Yi, SHEN Wenbin, SHI Guigang. Concept Analysis of Map Projection and Its Applications Based on Manifold Mapping Principle[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2313-2322. DOI: 10.13203/j.whugis20230138 |
[2] | JIAO Chenchen, LI Songlin, LI Houpu, BIAN Shaofeng, ZHONG Yexun. Non‑iterative Algorithm for Calculating the Reference Latitude of Conformal Conic Projection[J]. Geomatics and Information Science of Wuhan University, 2023, 48(2): 301-307. DOI: 10.13203/j.whugis20200301 |
[3] | ZENG Xiaoniu, LI Xihai, LIU Jihao, NIU Chao, HOU Weijun. Simultaneous Interpolation and Denoising Method for Airborne Gravity Data Based on Improved Projection onto Convex Sets Theory[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1555-1562. DOI: 10.13203/j.whugis20180470 |
[4] | LIU Wenchao, WEN Chaojiang, BIAN Hongwei, ZHENG Xiaobing. An Improved Method of Polar Ellipsoid Transverse Mercator Projection Based on Double Projection[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1138-1143. DOI: 10.13203/j.whugis20180028 |
[5] | SUN Weiwei, JIANG Man, LI Weiyue. Band Selection Using Sparse Self-representation for Hyperspectral Imagery[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 441-448. DOI: 10.13203/j.whugis20150052 |
[6] | LIAO Li, ZHOU Xueqin, LI Qingqing, CHEN Lu, ZHOU Jianzhong. A Dual Iterative Clustering Based Fuzzy Projection Pursuit Clustering Algorithm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 932-938. DOI: 10.13203/j.whugis20140152 |
[7] | ZHAO Hu, LI Lin, GONG Jianya. Universal Map Projection Selection[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2): 244-247. |
[8] | CHENMi, YIYaohua, LIDeren, QINQianqing. Application of Projection Pursuit Based on Dynamical Evolutionary Algorithm to Anomaly Target Detection in Hyperspectral Images[J]. Geomatics and Information Science of Wuhan University, 2006, 31(1): 55-58. |
[9] | Chen Yongqi. Selection of Projection Technique and Reduction of Geodetic Observations for Huge Engineering Project SSC[J]. Geomatics and Information Science of Wuhan University, 1993, 18(2): 10-14. |
[10] | Hu Yuju. The Possibility of Making Further Additions to the Map Projection Classifications——On the Poly-eylindrical Projection[J]. Geomatics and Information Science of Wuhan University, 1986, 11(3): 55-61. |