AdaTree算法在遥感影像分类中的应用

张晓贺, 翟亮, 张继贤, 杨享兵

张晓贺, 翟亮, 张继贤, 杨享兵. AdaTree算法在遥感影像分类中的应用[J]. 武汉大学学报 ( 信息科学版), 2013, 38(12): 1460-1464.
引用本文: 张晓贺, 翟亮, 张继贤, 杨享兵. AdaTree算法在遥感影像分类中的应用[J]. 武汉大学学报 ( 信息科学版), 2013, 38(12): 1460-1464.
ZHANG Xiaohe, ZHAI Liang, ZHANG Jixian, YANG Xiangbing. Application of AdaTree Algorithm to RemoteSensing Image Classification[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1460-1464.
Citation: ZHANG Xiaohe, ZHAI Liang, ZHANG Jixian, YANG Xiangbing. Application of AdaTree Algorithm to RemoteSensing Image Classification[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1460-1464.

AdaTree算法在遥感影像分类中的应用

基金项目: 国家科技支撑计划资助项目(2012BAH28B01);地理空间信息工程国家测绘地理信息局重点实验室基金资助项目(777121801)
详细信息
    作者简介:

    张晓贺,硕士生,主要从事遥感技术和图像处理研究。

  • 中图分类号: P237.4;TP753

Application of AdaTree Algorithm to RemoteSensing Image Classification

Funds: 国家科技支撑计划资助项目(2012BAH28B01);地理空间信息工程国家测绘地理信息局重点实验室基金资助项目(777121801)
  • 摘要: 目前的遥感影像分类研究中,决策树的生成完全依赖于现有的数据挖掘软件,缺少对决策树算法的深入研究和改进。本文以遥感影像分类为背景,采用BoostTree算法作为模型,通过算法改进构建了一种新的复合决策树算法———AdaTree,并以该算法为基础,设计实现了决策树遥感影像分类系统。以AdaTree算法作为分类器,分别对Landsat7ETM+影像和WordView2影像进行了基于像元和面向对象的分类实验,并与BoostTree和SVM算法进行了比较。实验结果表明,AdaTree算法在分类精度上要优于BoostTree和SVM算法,平均Kappa系数分别达到0.905 2和0.939 8。
    Abstract: As one of main classification methods used in data mining,the decision tree algo-rithm is widely used in remote sensing image classification.However,in current studies ofremote sensing image classification,the building of decision trees was found to be dependenton existing data mining software,with little research work focused on decision tree algo-rithms.Based on the BoostTree algorithm,we propose a new algorithm of decision tree en-sembles for remote sensing image classification-AdaTree which is a combination of C4.5andAdaBoost.M1algorithms.In AdaTree,the structure of C4.5and the final hypothesis of Ad-aBoost.M1were modified.With the AdaTree classifier algorithm,apiece of software wasdeveloped for cell-based and object-oriented remote sensing image classification.An experi-ment with Landsat7ETM+ and Wordview2images showed accuracy and efficient improve-ments of the AdaTree classifier when compared with BoostTree and SVM,either in cells-based or object-oriented classification.Its average Kappa coefficients reached 0.905 2and0.939 8.
计量
  • 文章访问数:  1208
  • HTML全文浏览量:  91
  • PDF下载量:  525
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-09
  • 修回日期:  2013-12-04
  • 发布日期:  2013-12-04

目录

    /

    返回文章
    返回