SUN Weiwei, JIANG Man, LI Weiyue. Band Selection Using Sparse Self-representation for Hyperspectral Imagery[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 441-448. DOI: 10.13203/j.whugis20150052
Citation: SUN Weiwei, JIANG Man, LI Weiyue. Band Selection Using Sparse Self-representation for Hyperspectral Imagery[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 441-448. DOI: 10.13203/j.whugis20150052

Band Selection Using Sparse Self-representation for Hyperspectral Imagery

Funds: 

The National Natural Science Foundation of China Nos. 41671342, 41401389

the Key Laboratory for Aerial Remote Sensing Technology of National Administration of Surveying, Mapping and Geoinformation (NASMG) No. 2015B12

the Chinese Postdoctoral Science Foundation Nos. 2016T90732, 2015M570668

Public Projects of Zhejiang Province No. 2016C33021

More Information
  • Author Bio:

    SUN Weiwei: SUN weiwei, PhD, associate professor, specializes in the theory and techniques of GIS and remote sensing, and “3S” applications in Coastal resources management and monitoring. E-mail:sunweiwei@nbu.edu.cn

  • Corresponding author:

    LI Weiyue, PhD. E-mail:lwy_326@126.com

  • Received Date: January 29, 2015
  • Published Date: April 04, 2017
  • Hyperspectral imaging could collect spectrum information of ground objects on the earth surface using hundreds of bands and are widely used in recognizing subtle differences among difference ground objects. Unfortunately, numerous bands with strong intra-band correlations cause unbearable computational burdens in hyperspectral processing, and especially that seriously hinders the classification of Hyperspectral imagery (HSI) in many realistic applications. Therefore, a sparse self-representation (SSR) method was proposed to select proper bands and make dimensionality reduction on HSI data to benefit its further classification procedure. The SSR improves the sparse representation model of multiple measurement vectors (MMV) using the idea that the dictionary matrix is equal to the measurement matrix, and it regards the aimed band subset as the representative from all bands of the HSI dataset. The method formulates the band selection into finding nonzero row vectors of sparse coefficient matrix in MMV, and adopts the mixed norm to constrain the number of nonzero row vectors. The sparse coefficient matrix is solved by using fast alternating direction method of multipliers and nonzero row vectors are clustered to make proper selection from all bands. Two open HSI datasets including Urban and Pavia University are implemented to testify our SSR method and the results are compared with the other four alternative band selection methods. Experimental results show that the SSR achieves comparable even better overall classification accuracies than the linear constrained minimum variance-based band correlation constraint (LCMV-BCC) algorithm and the sparse nonnegative matrix factorization (SNMF) algorithm, whereas the computational speed of SSR significantly outperforms that of LCMV-BCC. The proposed SSR could accordingly be a good alternative to help choose proper bands from hyperspectral images.
  • [1]
    Hsu Paihui. Feature Extraction of Hyperspectral Images Using Wavelet and Matching Pursuit[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(2):78-92 http://adsabs.harvard.edu/abs/2007JPRS...62...78H
    [2]
    Sun Weiwei, Halevy A, Benedetto J J, et al. UL-Isomap Based Nonlinear Dimensionality Reduction for Hyperspectral Imagery Classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 89:25-36
    [3]
    Divekar A. Theory and Applications of Compressive Sensing[D]. Indiana,USA:Purdue University, 2010
    [4]
    刘帅, 朱亚杰, 薛磊. 一种结合稀疏表示和纹理分块的遥感影像超分辨率方法[J]. 武汉大学学报·信息科学版, 2015, 40(5):578-582 http://ch.whu.edu.cn/CN/abstract/abstract3248.shtml

    Liu Shuai,Zhu Yajie,Xue Lei. Remote Sensing Image Super-resolution Method Using Sparse Representation and Classified Texture Patches[J]. Geomatics and Information of Wuhan University, 2015, 40(5):578-582 http://ch.whu.edu.cn/CN/abstract/abstract3248.shtml
    [5]
    黄远程, 钟燕飞, 赵野鹤,等. 联合盲分解与稀疏表达的高光谱图像异常目标检测[J]. 武汉大学学报·信息科学版, 2015, 40(9):1 144-1 150 http://ch.whu.edu.cn/CN/abstract/abstract3312.shtml

    Huang Yuancheng, Zhong Yanfei, Zhao Yehe, et al. Joint Blind Unmixing and Sparse Representation for Anomaly Detection in Hyperspectral Image[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9):1 144-1 150 http://ch.whu.edu.cn/CN/abstract/abstract3312.shtml
    [6]
    Sun Weiwei, Liu Chun, Li Jialin, et al. Low-rank and Sparse Matrix Decomposition-based Anomaly Detection for Hyperspectral Imagery[J]. Journal of Applied Remote Sensing, 2014, 8(1):083 641 doi: 10.1117/1.JRS.8.083641
    [7]
    Li Shuangjiang, Qi Hairong. Sparse Representation Based Band Selection for Hyperspectral Images[C]. 18th IEEE International Conference on Image Processing (ICIP), Brussels, Belgium, 2011
    [8]
    Li Jiming, Qian Yuntao. Clustering-based Hyperspectral Band Selection Using Sparse Nonnegative Matrix Factorization[J]. Journal of Zhejiang University Science C, 2011, 12(7):542-549 doi: 10.1631/jzus.C1000304
    [9]
    施蓓琦, 刘春,孙伟伟,等. 应用稀疏非负矩阵分解聚类实现高光谱影像波段的优化选择[J]. 测绘学报, 2014, 42(3):351-357 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201303008.htm

    Shi Beiqi, Liu Chun, Sun Weiwei, et al.Sparse Nonnegative Matrix Factorization for Hypespectral Optimal Band Selection[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(3):351-357 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201303008.htm
    [10]
    Du Qian, Bioucas-Dias J M, Plaza A. Hyperspectral Band Selection Using a Collaborative Sparse Model[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 2012
    [11]
    Chepushtanova S, Gittins C, Kirby M. Band Selection in Hyperspectral Imagery Using Sparse Support Vector Machines[C]. SPIE Defense+ Security Conference, Baltimore, Maryland, USA, 2014
    [12]
    Sun Weiwei, Zhang Liangpei, Li Weiyue, et al. Band Selection Using Improved Sparse Subspace Clustering for Hyperspectral Imagery Classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6):2 784-2 797 doi: 10.1109/JSTARS.2015.2462792
    [13]
    Chen Jie, Huo Xiaoming. Sparse Representations for Multiple Measurement Vectors (MMV) in an Over-Complete Dictionary[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'05), Philadelphia, Pennsylvania, USA, 2005
    [14]
    Van Den B E, Friedlander M P. Theoretical and Empirical Results for Recovery from Multiple Measurements[J]. IEEE Transactions on Information Theory, 2010, 56(5):2 516-2 527 doi: 10.1109/TIT.2010.2043876
    [15]
    Feng J M, Lee C H. Generalized Subspace Pursuit for Signal Recovery from Multiple -Measurement Vectors[C]. IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, 2013
    [16]
    Elhamifar E, Sapiro G, Vidal R. See all by Looking at a few:Sparse Modeling for Finding Representative Objects[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, Rhode Island, USA,2012
    [17]
    Boyd S, Parikh N, Chu E, et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers[J]. Foundations and Trends® in Machine Learning, 2011, 3(1):1-122 http://meeting.xidian.edu.cn/workshop/miis2012/uploads/files/20120824/20120824095907.pdf
    [18]
    Yang J, Zhang Y, Yin W. A Fast Alternating Direction Method for TVL1-L2 Signal Reconstruction from Partial Fourier Data[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2):288-297 doi: 10.1109/JSTSP.2010.2042333
    [19]
    Chang C I, Wang S. Constrained Band Selection for Hyperspectral Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6):1 575-1 585 doi: 10.1109/TGRS.2006.864389
    [20]
    Chang C I, Du Q, Sun T L, et al. A Joint Band Prioritization and Band-Decorrelation Approach to Band Selection for Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(6):2 631-2 641 doi: 10.1109/36.803411
  • Related Articles

    [1]MAO Ning, LI An, XU Jiangning, QIN Fangjun, LI Fangneng. Observability Analysis and Robust Fusion Algorithms of INS/Gravity Integrated Navigation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2113-2121. DOI: 10.13203/j.whugis20230075
    [2]GUO Ying, ZHOU Zhenping, CUI Jianhui, XIE Yongqiang, SU Yuan. A UWB Positioning Method Based on Improved Robust Adaptive Filtering[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230354
    [3]LI Raobo, YUAN Xiping, GAN Shu, BI Rui, GAO Sha, HU Lin. A Method for Solving Point Cloud Registration Models Using Dual Quaternion Descriptions of Point‑Planar Feature Constraints[J]. Geomatics and Information Science of Wuhan University, 2023, 48(9): 1546-1554. DOI: 10.13203/j.whugis20210184
    [4]WANG Yongbo, WANG Yunjia, SHE Wenwen, HAN Xinzhe. A Linear Features-Constrained, Plücker Coordinates-Based, Closed-Form Registration Approach to Terrestrial LiDAR Point Clouds[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1376-1384. DOI: 10.13203/j.whugis20160408
    [5]HOU Xiang, MIN Lianquan. A Robust Watermarking Algorithm Using SURF Feature Regions[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 421-426. DOI: 10.13203/j.whugis20140508
    [6]TIAN Jing, WU Xiaohuan, LIN Liupeng, REN Chang. Degree Correlation of Urban Street Networks and Its Relationship with Network Robustness[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 672-678. DOI: 10.13203/j.whugis20150046
    [7]WANG Mi, YANG Bo, JIN Shuying. A Registration Method Based on Object-Space Positioning Consistency for Satellite Multi-spectral Image[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 765-769.
    [8]LIAO Haibin, CHEN Qinghu, WANG Hongyong. Robust Face Recognition by Fusion Local Deformable Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(7): 877-881.
    [9]WEI Weimin, LIANG Guanglan, TANG Zhenjun, WANG Shuozhong. Robust Watermarking Method Based on Lapped Orthogonal Transform[J]. Geomatics and Information Science of Wuhan University, 2008, 33(3): 326-329.
    [10]Huang Youcai. Repeated Median Estimation and It's Application to Coordinate Transformation[J]. Geomatics and Information Science of Wuhan University, 1988, 13(1): 34-47.
  • Cited by

    Periodical cited type(5)

    1. 牟丽爽,冯金扬,吴书清,李春剑,王启宇. 重力关键比对点连续观测不确定度评估. 计量学报. 2022(12): 1639-1644 .
    2. 李瑞东,金大利,樊春燕,王艳,任佳. DZW重力仪观测大地震激发的地球自由振荡. 科技通报. 2017(04): 28-31 .
    3. 江颖,胡小刚. 利用芦山地震自由振荡信号检验中国大陆超导重力仪的高频特性. 武汉大学学报(信息科学版). 2017(05): 583-588 .
    4. 张焱. 超导重力评估水文地质及断层模式. 中国水运(下半月). 2016(07): 173-175+178 .
    5. 张焱. 超导重力评估水文地质及断层模式. 中国水运(下半月). 2016(14): 173-175+178 .

    Other cited types(2)

Catalog

    Article views (1907) PDF downloads (527) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return