Citation: | SUN Weiwei, JIANG Man, LI Weiyue. Band Selection Using Sparse Self-representation for Hyperspectral Imagery[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 441-448. DOI: 10.13203/j.whugis20150052 |
[1] |
Hsu Paihui. Feature Extraction of Hyperspectral Images Using Wavelet and Matching Pursuit[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(2):78-92 http://adsabs.harvard.edu/abs/2007JPRS...62...78H
|
[2] |
Sun Weiwei, Halevy A, Benedetto J J, et al. UL-Isomap Based Nonlinear Dimensionality Reduction for Hyperspectral Imagery Classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 89:25-36
|
[3] |
Divekar A. Theory and Applications of Compressive Sensing[D]. Indiana,USA:Purdue University, 2010
|
[4] |
刘帅, 朱亚杰, 薛磊. 一种结合稀疏表示和纹理分块的遥感影像超分辨率方法[J]. 武汉大学学报·信息科学版, 2015, 40(5):578-582 http://ch.whu.edu.cn/CN/abstract/abstract3248.shtml
Liu Shuai,Zhu Yajie,Xue Lei. Remote Sensing Image Super-resolution Method Using Sparse Representation and Classified Texture Patches[J]. Geomatics and Information of Wuhan University, 2015, 40(5):578-582 http://ch.whu.edu.cn/CN/abstract/abstract3248.shtml
|
[5] |
黄远程, 钟燕飞, 赵野鹤,等. 联合盲分解与稀疏表达的高光谱图像异常目标检测[J]. 武汉大学学报·信息科学版, 2015, 40(9):1 144-1 150 http://ch.whu.edu.cn/CN/abstract/abstract3312.shtml
Huang Yuancheng, Zhong Yanfei, Zhao Yehe, et al. Joint Blind Unmixing and Sparse Representation for Anomaly Detection in Hyperspectral Image[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9):1 144-1 150 http://ch.whu.edu.cn/CN/abstract/abstract3312.shtml
|
[6] |
Sun Weiwei, Liu Chun, Li Jialin, et al. Low-rank and Sparse Matrix Decomposition-based Anomaly Detection for Hyperspectral Imagery[J]. Journal of Applied Remote Sensing, 2014, 8(1):083 641 doi: 10.1117/1.JRS.8.083641
|
[7] |
Li Shuangjiang, Qi Hairong. Sparse Representation Based Band Selection for Hyperspectral Images[C]. 18th IEEE International Conference on Image Processing (ICIP), Brussels, Belgium, 2011
|
[8] |
Li Jiming, Qian Yuntao. Clustering-based Hyperspectral Band Selection Using Sparse Nonnegative Matrix Factorization[J]. Journal of Zhejiang University Science C, 2011, 12(7):542-549 doi: 10.1631/jzus.C1000304
|
[9] |
施蓓琦, 刘春,孙伟伟,等. 应用稀疏非负矩阵分解聚类实现高光谱影像波段的优化选择[J]. 测绘学报, 2014, 42(3):351-357 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201303008.htm
Shi Beiqi, Liu Chun, Sun Weiwei, et al.Sparse Nonnegative Matrix Factorization for Hypespectral Optimal Band Selection[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(3):351-357 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201303008.htm
|
[10] |
Du Qian, Bioucas-Dias J M, Plaza A. Hyperspectral Band Selection Using a Collaborative Sparse Model[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 2012
|
[11] |
Chepushtanova S, Gittins C, Kirby M. Band Selection in Hyperspectral Imagery Using Sparse Support Vector Machines[C]. SPIE Defense+ Security Conference, Baltimore, Maryland, USA, 2014
|
[12] |
Sun Weiwei, Zhang Liangpei, Li Weiyue, et al. Band Selection Using Improved Sparse Subspace Clustering for Hyperspectral Imagery Classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6):2 784-2 797 doi: 10.1109/JSTARS.2015.2462792
|
[13] |
Chen Jie, Huo Xiaoming. Sparse Representations for Multiple Measurement Vectors (MMV) in an Over-Complete Dictionary[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'05), Philadelphia, Pennsylvania, USA, 2005
|
[14] |
Van Den B E, Friedlander M P. Theoretical and Empirical Results for Recovery from Multiple Measurements[J]. IEEE Transactions on Information Theory, 2010, 56(5):2 516-2 527 doi: 10.1109/TIT.2010.2043876
|
[15] |
Feng J M, Lee C H. Generalized Subspace Pursuit for Signal Recovery from Multiple -Measurement Vectors[C]. IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, 2013
|
[16] |
Elhamifar E, Sapiro G, Vidal R. See all by Looking at a few:Sparse Modeling for Finding Representative Objects[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, Rhode Island, USA,2012
|
[17] |
Boyd S, Parikh N, Chu E, et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers[J]. Foundations and Trends® in Machine Learning, 2011, 3(1):1-122 http://meeting.xidian.edu.cn/workshop/miis2012/uploads/files/20120824/20120824095907.pdf
|
[18] |
Yang J, Zhang Y, Yin W. A Fast Alternating Direction Method for TVL1-L2 Signal Reconstruction from Partial Fourier Data[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2):288-297 doi: 10.1109/JSTSP.2010.2042333
|
[19] |
Chang C I, Wang S. Constrained Band Selection for Hyperspectral Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6):1 575-1 585 doi: 10.1109/TGRS.2006.864389
|
[20] |
Chang C I, Du Q, Sun T L, et al. A Joint Band Prioritization and Band-Decorrelation Approach to Band Selection for Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(6):2 631-2 641 doi: 10.1109/36.803411
|
[1] | MAO Ning, LI An, XU Jiangning, QIN Fangjun, LI Fangneng. Observability Analysis and Robust Fusion Algorithms of INS/Gravity Integrated Navigation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2113-2121. DOI: 10.13203/j.whugis20230075 |
[2] | GUO Ying, ZHOU Zhenping, CUI Jianhui, XIE Yongqiang, SU Yuan. A UWB Positioning Method Based on Improved Robust Adaptive Filtering[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230354 |
[3] | LI Raobo, YUAN Xiping, GAN Shu, BI Rui, GAO Sha, HU Lin. A Method for Solving Point Cloud Registration Models Using Dual Quaternion Descriptions of Point‑Planar Feature Constraints[J]. Geomatics and Information Science of Wuhan University, 2023, 48(9): 1546-1554. DOI: 10.13203/j.whugis20210184 |
[4] | WANG Yongbo, WANG Yunjia, SHE Wenwen, HAN Xinzhe. A Linear Features-Constrained, Plücker Coordinates-Based, Closed-Form Registration Approach to Terrestrial LiDAR Point Clouds[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1376-1384. DOI: 10.13203/j.whugis20160408 |
[5] | HOU Xiang, MIN Lianquan. A Robust Watermarking Algorithm Using SURF Feature Regions[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 421-426. DOI: 10.13203/j.whugis20140508 |
[6] | TIAN Jing, WU Xiaohuan, LIN Liupeng, REN Chang. Degree Correlation of Urban Street Networks and Its Relationship with Network Robustness[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 672-678. DOI: 10.13203/j.whugis20150046 |
[7] | WANG Mi, YANG Bo, JIN Shuying. A Registration Method Based on Object-Space Positioning Consistency for Satellite Multi-spectral Image[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 765-769. |
[8] | LIAO Haibin, CHEN Qinghu, WANG Hongyong. Robust Face Recognition by Fusion Local Deformable Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(7): 877-881. |
[9] | WEI Weimin, LIANG Guanglan, TANG Zhenjun, WANG Shuozhong. Robust Watermarking Method Based on Lapped Orthogonal Transform[J]. Geomatics and Information Science of Wuhan University, 2008, 33(3): 326-329. |
[10] | Huang Youcai. Repeated Median Estimation and It's Application to Coordinate Transformation[J]. Geomatics and Information Science of Wuhan University, 1988, 13(1): 34-47. |