多特征差分核支持向量机遥感影像变化检测方法

林怡, 刘冰, 陈映鹰, 潘琛

林怡, 刘冰, 陈映鹰, 潘琛. 多特征差分核支持向量机遥感影像变化检测方法[J]. 武汉大学学报 ( 信息科学版), 2013, 38(8): 978-982.
引用本文: 林怡, 刘冰, 陈映鹰, 潘琛. 多特征差分核支持向量机遥感影像变化检测方法[J]. 武汉大学学报 ( 信息科学版), 2013, 38(8): 978-982.
LIN Yi, LIU Bing, CHEN Yingying, PAN Chen. Change Detection Method Based on Multi-feature Differencing Kernel SVM for Remote Sensing Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 978-982.
Citation: LIN Yi, LIU Bing, CHEN Yingying, PAN Chen. Change Detection Method Based on Multi-feature Differencing Kernel SVM for Remote Sensing Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 978-982.

多特征差分核支持向量机遥感影像变化检测方法

基金项目: 国家科技支撑计划后世博科技专项资助项目(2010BAK69B13,2010BAK69B16)
详细信息
    作者简介:

    林怡,副教授,博士,主要从事数字摄影测量、遥感技术应用的教学与科研。

  • 中图分类号: TP753;P237.4

Change Detection Method Based on Multi-feature Differencing Kernel SVM for Remote Sensing Imagery

Funds: 国家科技支撑计划后世博科技专项资助项目(2010BAK69B13,2010BAK69B16)
  • 摘要: 讨论了利用遥感影像光谱、纹理等多种特征信息的多核函数组合方式,给出了多特征空间差分核函数的构建方法,设计了多特征差分核支持向量机变化检测算法,该算法能够实现联合类别样本加权和遥感影像多种变化类别信息的直接检测。实验结果表明,该算法综合利用多种特征信息,检测精度明显高于传统方法,有利于提取小样本的变化信息,避免了以往检测方法需要确定变化阈值的复杂性和不确定性。
    Abstract: According to an analysis of support vector machine(SVM) and multiple kernel theory,an improved SVM change detection model based on multi-feature differencing kernel for remote sensing imagery was proposed.The combinations of kernel functions using spectral data and textural feature were discussed.After detailing the structure of the image differencing kernel based on multi-features,the algorithm of SVM change detection model was designed,and combined with category weights for the extraction of the spatial distribution of several change classes.Experimental results show that with the help of a multiple kernel function,the change detection model can get higher detection accuracy than the traditional methods,and also avoid determining change thresholds that are complex and uncertain.
  • [1] 贾振红余银峰,杨杰,胡英杰,. 一种新的无监督的卫星影像变化检测算法[J]. 光电子.激光. 2011(03)[2] 汪洪桥孙富春,蔡艳宁,陈宁,丁林阁,. 多核学习方法[J]. 自动化学报. 2010(08)[3] 潘琛林怡,陈映鹰,. 基于多特征的遥感影像决策树分类[J]. 光电子.激光. 2010(05)[4] 谭琨杜培军,. 基于支持向量机的高光谱遥感图像分类[J]. 红外与毫米波学报. 2008(02)[5] 马国锐眭海刚,李平湘,秦前清,. 一种遥感影像核变化检测方法[J]. 武汉大学学报(信息科学版). 2007(07)[6] 罗亚徐建华,岳文泽,. 基于遥感影像的植被指数研究方法述评[J]. 生态科学. 2005(01)[7] 赵英时等编著,. 遥感应用分析原理与方法[M]. 科学出版社, 2003
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-15
  • 修回日期:  2013-05-15
  • 发布日期:  2013-08-04

目录

    /

    返回文章
    返回