CAI Lai-liang, SONG De-yun, HU Qing-feng, WEI Feng-yuan, SHU Qian-jin. A Point Cloud Vector Tracing Algorithm for Automatic Drawing of Interior Plan[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1404-1411. DOI: 10.13203/j.whugis20190258
Citation: CAI Lai-liang, SONG De-yun, HU Qing-feng, WEI Feng-yuan, SHU Qian-jin. A Point Cloud Vector Tracing Algorithm for Automatic Drawing of Interior Plan[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1404-1411. DOI: 10.13203/j.whugis20190258

A Point Cloud Vector Tracing Algorithm for Automatic Drawing of Interior Plan

Funds: 

National Natural Science Foundation of China 41701597

National Natural Science Foundation of China U1810203

the Postdoctoral Science Foundation of China 2018M642746

More Information
  • Author Bio:

    CAI Lai-liang: CAI Lailiang, PhD, associate professor, specializes in mining subsidence and point cloud processing. E-mail: cll@hpu.edu.cn

  • Corresponding author:

    SONG Deyun, master. E-mail: 643823940@qq.com

  • Received Date: October 25, 2020
  • Published Date: September 17, 2021
  •   Objectives  According to the spatial attitude characteristics of the indoor walls, a point cloud vector tracking algorithm for automatically drawing the indoor plan was proposed.
      Methods  Firstly, the indoor wall point cloud with a certain thickness was intercepted and projected onto the horizontal plane, and square grids were established on the projection plane. The plane points after projection were segmented and managed, and the point cloud in every grid was clustered by the eight neighborhood algorithm. Then the grid center of gravity method was used to generate sparse points, which were tracked and sorted according to the distance between points in the neighborhood and the angle of connection vector. The vector sequence of tracking direction was established, and the point cloud segmentation of different walls was completed combined with mutation of angle between adjacent values in the vector sequence. Finally, the least squares algorithm was used to fit the line of the same wall point cloud, and the intersection point of the adjacent wall line was obtained.
      Results  The plane projection line segment of the house wall and its spatial connection relationship were established. The wall projection line segment was output in sequence. The drawing of the house plan was completed and the DXF format data exchange file was exported.
      Conclusions  The proposed algorithm was verified by the analysis of indoor scanning data of a residential building. The results show that the proposed algorithm can accurately and quickly analyzed and processed the indoor laser scanning point cloud, and completed the drawing of interior plan.
  • [1]
    Weerakoon T, Ishii K, Nassiraei A A F. Geometric Feature Extraction from 2D Laser Range Data for Mobile Robot Navigation[C]//2015 IEEE 10th International Conference on Industrial and Information Systems(ICⅡS), Peradeniya, Sri Lanka, 2015
    [2]
    危双丰, 刘明蕾, 赵江洪, 等. 利用点云检测室内导航元素的方法综述[J]. 武汉大学学报·信息科学版, 2018, 43(12): 2 003- 2 011 doi: 10.13203/j.whugis20180144

    Wei Shuangfeng, Liu Minglei, Zhao Jianghong, et al. A Survey of Methods for Detecting Indoor Navigation Elements from Point Clouds[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2 003-2 011 doi: 10.13203/j.whugis20180144
    [3]
    Nguyen Tien Thanh, 刘修国, 王红平, 等. 基于激光扫描技术的三维模型重建[J]. 激光与光电子学进展, 2011, 48 (8): 112-117 https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201108016.htm

    Nguyen Tien Thanh, Liu Xiuguo, Wang Hongping, et al. 3D Model Reconstruction Based on Laser Scanning Technique[J]. Laser & Optoelectronics Progress, 2011, 48(8): 112-117 https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201108016.htm
    [4]
    王鹏, 刘如飞, 马新江, 等. 一种车载激光点云中杆目标自动提取方法[J]. 武汉大学学报·信息科学版, 2020, 45 (7): 1 035-1 042 doi: 10.13203/j.whugis20170421

    Wang Peng, Liu Rufei, Ma Xinjiang, et al. An Automatic Extraction Method for Pole-Like Objects from Vehicle-Borne Laser Point Cloud[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1 035-1 042 doi: 10.13203/j.whugis20170421
    [5]
    朱庆, 李世明, 胡翰, 等. 面向三维城市建模的多点云数据融合方法综述[J]. 武汉大学学报·信息科学版, 2018, 43 (12): 1 962-1 971 doi: 10.13203/j.whugis20180109

    Zhu Qing, Li Shiming, Hu Han, et al. Multiple Point Clouds Data Fusion Method for 3D City Modeling[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1 962-1 971 doi: 10.13203/j.whugis20180109
    [6]
    Garulli A, Giannitrapani A, Rossi A, et al. Mobile Robot SLAM for Line-Based Environment Representation[C]//44th IEEE Conference on Decision and Control, Seville, Spain, 2005
    [7]
    满增光, 叶文华, 楼佩煌, 等. 基于自适应阈值的距离图像线段特征提取[J]. 深圳大学学报(理工版), 2011, 28 (6): 483-488 doi: 10.3969/j.issn.1000-2618.2011.06.003

    Man Zengguang, Ye Wenhua, Lou Peihuang, et al. Line Feature Extraction Based on Adaptive Threshold in Range Images[J]. Journal of Shenzhen University Science and Engineering, 2011, 28(6): 483-488 doi: 10.3969/j.issn.1000-2618.2011.06.003
    [8]
    Borges G A, Aldon M J. Line Extraction in 2D Range Images for Mobile Robotics[J]. Journal of Intelligent and Robotic Systems, 2004, 40 (3): 267-297 doi: 10.1023/B:JINT.0000038945.55712.65
    [9]
    Vandorpe J, Van Brussel H, Xu H. Exact Dynamic Map Building for a Mobile Robot Using Geometrical Primitives Produced by a 2D Range Finder[C]//IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, 1996
    [10]
    Borges G A, Aldon M J. A Split-and-Merge Segmentation Algorithm for Line Extraction in 2D Range Images[C]//15th International Conference on Pattern Recognition (ICPR-2000), Barcelona, Spain, 2000
    [11]
    Nguyen V, Gächter S, Martinelli A, et al. A Comparison of Line Extraction Algorithms Using 2D Range Data for Indoor Mobile Robotics[J]. Autonomous Robots, 2007, 23 (2): 97-111 doi: 10.1007/s10514-007-9034-y
    [12]
    Choi Y H, Lee T K, Oh S Y. A Line Feature Based SLAM with Low Grade Range Sensors Using Geometric Constraints and Active Exploration for Mobile Robot[J]. Autonomous Robots, 2008, 24 (1): 13-27 doi: 10.1007/s10514-007-9050-y
    [13]
    田朋举, 梅文胜, 花向红, 等. 一种基于点云数据快速生成建筑物断面图的方法[J]. 测绘地理信息, 2020, 45 (4): 88-92 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202004019.htm

    Tian Pengju, Mei Wensheng, Hua Xianghong, et al. A Method for Generating Building Sectional Drawing Using 3D Laser Point Cloud Data[J]. Journal of Geomatics, 2020, 45(4): 88-92 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202004019.htm
    [14]
    He X, Cai Z H. Feature Extraction from 2D Laser Range Data for Indoor Navigation of Aerial Robot [C]//2013 Chinese Automation Congress, Changsha, China, 2013
    [15]
    湛逸飞, 杨必胜. 基于LiDAR点云法向量稳健估计的室内平面图自动生成方法[J]. 地理信息世界, 2017, 24 (1): 92-96 doi: 10.3969/j.issn.1672-1586.2017.01.018

    Zhan Yifei, Yang Bisheng. An Automatic Indoor Plan Generation Method Based on Robust LiDAR Point Cloud Normal Estimation[J]. Geomatics World, 2017, 24 (1): 92-96 doi: 10.3969/j.issn.1672-1586.2017.01.018
    [16]
    郑德华. ICP算法及其在建筑物扫描点云数据配准中的应用[J]. 测绘科学, 2007, 32 (2): 31-32 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD200702008.htm

    Zheng Dehua. ICP Algorithm and Application in the Data Registration of Building Scanning Point Cloud [J]. Science of Surveying and Mapping, 2007, 32 (2): 31-32 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD200702008.htm
    [17]
    何君. 基于局部拟合平面投影搜索最近点的ICP配准[J]. 测绘地理信息, 2019, 44 (4): 86-89 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201904021.htm

    He Jun. ICP Registration Algorithm Based on Closet Point Searching in Local Plane Projection[J]. Journal of Geomatics, 2019, 44(4): 86-89 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201904021.htm
    [18]
    屈亚运, 程英蕾, 邱浪波. 改进的八邻域搜索提取建筑物立体特征方法[J]. 空军工程大学学报(自然科学版), 2015, 16 (4): 66-69 https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201504016.htm

    Qu Yayun, Cheng Yinglei, Qiu Langbo. An Improved Method of Extracting 3D Features of Buildings Based on Eight Neighborhood Search Method[J]. Journal of Air Force Engineering University(Natural Science Edition), 2015, 16(4): 66-69 https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201504016.htm
    [19]
    衡星辰, 罗俊颉, 郭俊文, 等. 八邻域网格聚类的多样性XML文档近似查询算法[J]. 西安交通大学学报, 2007, 41(8): 907-911 https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT200708009.htm

    Heng Xingchen, Luo Junjie, Guo Junwen, et al. Approximate Query Algorithm Based on EightNeighbor Grid Clustering for Heterogeneous XML Documents[J]. Journal of Xi'an Jiaotong University, 2007, 41(8): 907-911 https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT200708009.htm
    [20]
    彭晨, 余柏蒗, 吴宾, 等. 基于移动激光扫描点云特征图像和SVM的建筑物立面半自动提取方法[J]. 地球信息科学学报, 2016, 18 (7): 878-885 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201607004.htm

    Peng Chen, Yu Bailang, Wu Bin, et al. A Method for Semiautomated Segmentation of Building Facade from Mobile Laser Scanning Point Cloud Based on Feature Images and SVM[J]. Journal of Geo-Information Science, 2016, 18(7): 878-885 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201607004.htm
  • Related Articles

    [1]LIU Wanke, TAO Xianlu, ZHANG Chuanming, YAO Yibin, WANG Fuhong, JIA Hailu, LOU Yidong. Pedestrian Indoor and Outdoor Seamless Positioning Technology and Prototype System Based on Cloud-End Collaboration of Smartphone[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1808-1818. DOI: 10.13203/j.whugis20210310
    [2]ZHOU Sha, NIU Jiqiang, XU Feng, PAN Xiaofang, ZHEN Wenjie, QIAN Haoyue. Estimating Gaze Directions for Pedestrian Navigation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 700-705,735. DOI: 10.13203/j.whugis20200465
    [3]FANG Hao, SONG Zhangtong, YANG Liu, MA Yitao, QIN Qianqing. Spatial Cognitive Elements of VR Mobile City Navigation Map[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1124-1130. DOI: 10.13203/j.whugis20180066
    [4]FANG Zhixiang, XU Hong, SHAW Shih-Lung, LI Qingquan, YUAN Shujun, LI Ling. Pedestrian Navigation Research Trend: From Absolute Space to Relative Space-Based Approach[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2173-2182. DOI: 10.13203/j.whugis20180170
    [5]LIU Tao, ZHANG Xing, LI Qingquan, FANG Zhixiang. An Indoor Pedestrian Route Planning Algorithm Based on Landmark Visibility[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 43-48. DOI: 10.13203/j.whugis20150387
    [6]ZHANG Qinghua, SUI Lifen, JIA Xiaolin, ZHU Yongxing. SIS Error Statistical Analysis of Beidou Satellite Navigation System[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 271-274. DOI: 10.13203/j.whugis20120062
    [7]ZHANG Xing, LI Qingquan, FANG Zhixiang, HUANG Ling. Landmark and Branch-based Pedestrian Route Complexity and Selection Algorithm[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1239-1242.
    [8]FENG Xin, WANG Hua, TAN Shusen. Multipath Performance Analysis for Navigation Signals in Different Pro-correlation Bandwidth and Correlator Spacing[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1191-1194.
    [9]GAN Yu, SUI Lifen. Real-time Detection and Processing of Noise Correlation in Kinematic Navigation and Positioning[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 909-913.
    [10]ZHANG Xing, LI Qingquan, FANG Zhixiang. An Approach of Generating Landmark Chain for Pedestrian Navigation Applications[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1240-1244.
  • Cited by

    Periodical cited type(6)

    1. 李渊,白焕霞,梁嘉祺,李锐,杜亚男,杨盟盛. 虚拟旅游空间记忆匹配性与影响因素研究——基于眼动实验和认知地图的分析. 旅游科学. 2024(10): 39-61 .
    2. 李宜倩,乔子轩,宋晓蕾. 产生追踪手势对个体寻路绩效增强的设计研究. 包装工程. 2023(22): 59-64+115 .
    3. 李宜倩,乔子轩,宋晓蕾. 产生追踪手势对个体寻路绩效增强的设计研究. 包装工程. 2023(20): 59-64+115 .
    4. 晋良海,方梅,张倩,陈云,邵波. 公共通道行人非理性切变行为效应仿真. 系统工程学报. 2023(05): 601-613 .
    5. 应申,苏俊如,刘之林,张雯博. 空间路线描绘:以大学生入学路线的心像地图为例. 测绘工程. 2022(01): 1-11 .
    6. 刘兵,孟立秋. 扩展现实与地理空间认知研究进展与展望. 武汉大学学报(信息科学版). 2022(12): 2047-2053 .

    Other cited types(7)

Catalog

    Article views (1418) PDF downloads (96) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return