XU Shan, ZOU Bin, WANG Min, LIU Ning. Performance Comparison of Artificial Neural Network and Kriging in Spatial Estimation of PM2.5 Concentration[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1642-1650. DOI: 10.13203/j.whugis20180482
Citation: XU Shan, ZOU Bin, WANG Min, LIU Ning. Performance Comparison of Artificial Neural Network and Kriging in Spatial Estimation of PM2.5 Concentration[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1642-1650. DOI: 10.13203/j.whugis20180482

Performance Comparison of Artificial Neural Network and Kriging in Spatial Estimation of PM2.5 Concentration

Funds: 

The National Key Research and Development Program of China 2016YFC0206205

the National Natural Science Foundation of China 41871317

the Innovation Driven Program of Central South University 2018CX016

More Information
  • Author Bio:

    XU Shan, PhD candidate, specializes in fine spatial-temporal modeling of urban air pollution. E-mail: shan_xu@csu.edu.cn

  • Corresponding author:

    ZOU Bin, PhD, professor. E-mail: 210010@csu.edu.cn

  • Received Date: December 26, 2019
  • Published Date: October 04, 2020
  • Performance of artificial neural network modeling and Kriging interpolation in PM2.5 concentration estimation varies with sample sizes and predictor variables change. This paper analyzes the performance of ordinary Kriging (OK), radical basis function (RBF) networks based on geographic coordinates, CoKriging and RBF with the key factor(s) (CK and CoRBF) selected by correlation analysis and RBF network, using different training sets with various sizes. The spatial distribution of PM2.5 concentration is then estimated by the best performed method. Results show that RBF, CoRBF, OK, and CK can all be used to estimate PM2.5 concentration efficiently, and their accuracies improved unstably as the number of training sites increase. CoRBF with the key factor of population illustrates the largest variation of PM2.5 concentration, while CK has the highest coefficient of determination (R2) and index of agreement (IOA) and the lowest mean square error (MSE), mean absolute error (MAE), and relative error (RE). Correspondingly, the spatial pattern of CK estimated PM2.5 concentration is smoother than CoRBF estimated PM2.5 concentration, while they both are very similar to site measurements and reveal detailed information.
  • [1]
    Cohen A J, Brauer M, Burnett R, et al. Estimates and 25-Year Trends of the Global Burden of Disease Attributable to Ambient Air Pollution: An Analysis of Data from the Global Burden of Diseases Study 2015[J]. The Lancet, 2017, 389(10 082):1 907-1 918 https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(17)30505-6/fulltext
    [2]
    Di Q, Wang Y, Zanobetti A, et al. Air Pollution and Mortality in the Medicare Population[J]. New England Journal of Medicine, 2017, 376(26): 2 513-2 522 doi: 10.1056/NEJMoa1702747
    [3]
    Apte J S, Messier K P, Gani S, et al. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data[J]. Environmental Science & Technology, 2017, 51(12): 6 999-7 008 doi: 10.1021/acs.est.7b00891
    [4]
    李沈鑫, 邹滨, 刘兴权, 等. 2013-2015年中国PM2.5污染状况时空变化[J].环境科学研究, 2017, 30(5): 678-687 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyj201705005

    Li Shenxin, Zou Bin, Liu Xingquan, et al. Pollution Status and Spatial-Temporal Variations of PM2.5 in China During 2013-2015[J]. Research of Environmental Sciences, 2017, 30(5):678-687 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyj201705005
    [5]
    He J, Zhang Y, Wang K, et al. Multi-Year Application of Wrf-Cam5 over East Asia-Part Ⅰ: Comprehensive Evaluation and Formation Regimes of O3 and PM2.5 [J]. Atmospheric Environment, 2017, 165: 122-142 doi: 10.1016/j.atmosenv.2017.06.015
    [6]
    Fang X, Zou B, Liu X, et al. Satellite-Based Ground PM2.5 Estimation Using Timely Structure Adaptive Modeling[J]. Remote Sensing of Environment, 2016, 186: 152-163 doi: 10.1016/j.rse.2016.08.027
    [7]
    Zou B, Pu Q, Bilal M, et al. High-Resolution Satellite Mapping of Fine Particulates Based on Geographically Weighted Regression[J]. IEEE Geoscience & Remote Sensing Letters, 2017, 13(4): 495-499 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b64b214ee611a8372ed0e871154af967
    [8]
    焦利民, 许刚, 赵素丽, 等.基于LUR的武汉市PM2.5浓度空间分布模拟[J].武汉大学学报∙信息科学版, 2015, 40(8):1 088-1 094 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb201508016

    Jiao Limin, Xu Gang, Zhao Suli, et al. LUR-Based Simulation of the Spatial Distribution of PM2.5 of Wuhan[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8):1 088-1 094 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb201508016
    [9]
    Zou B, Wang M, Wan N, et al. Spatial Modeling of PM2.5 Concentrations with a Multifactoral Radial Basis Function Neural Network[J]. Environmental Science & Pollution Research, 2015, 22(14): 1-10 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9e31aa75e7c015257bc0b82c703a73c2
    [10]
    Xiao L, Lang Y, Christakos G. High-Resolution Spatiotemporal Mapping of PM2.5 Concentrations at Mainland China Using a Combined BME-GWR Technique[J]. Atmospheric Environment, 2018, 173: 295-305 doi: 10.1016/j.atmosenv.2017.10.062
    [11]
    Liu Y, Cao G, Zhao N, et al. Improve Ground-Level PM2.5 Concentration Mapping Using A Random Forests-Based Geostatistical Approach[J]. Environmental Pollution, 2017, 235: 272-282 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f8c786a15a6f1773b2e43de904c53dbd
    [12]
    Mishra D, Goyal P, Upadhyay A. Artificial Intelligence Based Approach to Forecast PM2.5 During Haze Episodes: A Case Study of Delhi, India[J]. Atmospheric Environment, 2015, 102:239-248 doi: 10.1016/j.atmosenv.2014.11.050
    [13]
    Adams M D, Kanaroglou P S. Mapping Real-Time Air Pollution Health Risk for Environmental Management: Combining Mobile and Stationary Air Pollution Monitoring with Neural Network Models[J]. Journal of Environmental Management, 2016, 168:133-141 http://www.ncbi.nlm.nih.gov/pubmed/26706225
    [14]
    Ordieres J B, VergarA E P, Capuz R S, et al. Neural Network Prediction Model for Fine Particulate Matter (PM2.5) on the US-Mexico Border in El Paso (Texas) and Ciudad Juárez (Chihuahua) [J]. Environmental Modelling & Software, 2005, 20(5): 547-559 http://www.sciencedirect.com/science/article/pii/S1364815204000830
    [15]
    Park J, Sandberg I W. Universal Approximation Using Radial-Basis-Function Networks[J]. Neural Computation, 1991, 3(2): 246-257 doi: 10.1162/neco.1991.3.2.246
    [16]
    Stein M L. Interpolation of Spatial Data: Some Theory for Kriging[M]. New York: Springer-Verlag, 1999: 23-27
    [17]
    Myers D E. Matrix Formulation of Co-Kriging[J]. Journal of the International Association for Mathematical Geology, 1982, 14(3): 249-257 doi: 10.1007/BF01032887
    [18]
    Wang J F, Li X H, Christakos G, et al. Geographical Detectors-Based Health Risk Assessment and Its Application in the Neural Tube Defects Study of the Heshun Region, China[J]. International Journal of Geographical Information Science, 2010, 24(1): 107-127 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f637928d711402f020a016140497a2c7
    [19]
    邹滨, 许珊, 张静.土地利用视角空气污染空间分异的地理分析[J].武汉大学学报∙信息科学版, 2017, 42(2):216-222 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb201702012

    Zou Bin, Xu Shan, Zhang Jing. Spatial Variation Analysis of Urban Air Pollution Using GIS: A Land Use Perspective[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2):216-222 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb201702012
    [20]
    Guo J, Xia F, Zhang Y, et al. Impact of Diurnal Variability and Meteorological Factors on the PM2.5-Aod Relationship: Implications for PM2.5 Remote Sensing[J]. Environmental Pollution, 2017, 221:94-104 doi: 10.1016/j.envpol.2016.11.043
    [21]
    Caselli M, Trizio L, Gennaro G D, et al. A Simple Feedforward Neural Network for the PM10 Forecasting: Comparison with a Radial Basis Function Network and a Multivariate Linear Regression Model[J]. Water Air & Soil Pollution, 2009, 201(1-4):365-377 doi: 10.1007/s11270-008-9950-2
    [22]
    Asadollahfardi G, Zangooei H, Aria S H. Predicting PM2.5 Concentrations Using Artificial Neural Networks and Markov Chain: A Case Study Karaj City[J]. Asian Journal of Atmospheric Environment, 2016, 10(2):67-79 doi: 10.5572/ajae.2016.10.2.067
    [23]
    Yao L, Lu N. Spatiotemporal Distribution and Short-Term Trends of Particulate Matter Concentration over China, 2006-2010[J]. Environmental Science & Pollution Research International, 2014, 21(16):9 665-9 675 doi: 10.1007/s11356-014-2996-3
  • Related Articles

    [1]WANG Yong, REN Dong, LIU Yanping, LI Jiangbo. Spring PM2.5 Concentration Model in Hebei Province Based on GNSS PWV, Wind Speed and Air Pollution Observation[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1198-1204. DOI: 10.13203/j.whugis20170340
    [2]WU Kai, SHU Hong, NIE Lei, JIAO Zhenhang. An Approach to Estimating Spatially Correlated Error Covariance of Remote Sensing Retrieved Soil Moisture[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 751-757. DOI: 10.13203/j.whugis20170133
    [3]LI Shuang, ZHAI Liang, SANG Huiyong, ZHOU Bin, FANG Xin, ZHEN Yunpeng. An Improved LUR-based Spatial Distribution Simulation for the Large Area PM2.5 Concentration[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1574-1579, 1587. DOI: 10.13203/j.whugis20170042
    [4]WANG Yong, LIU Yanping, LI Jiangbo, LIU Lintao. The Correlation Between the Variation of PM2.5/PM10 and Precipitable Water Vapor Based on GPS and Radiosonde[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1626-1631. DOI: 10.13203/j.whugis20140628
    [5]CHENG Changxiu, HU Xiatian, SONG Xiaomei, CHEN Chi. Selectivity Estimation Based on Cumulative Annular Bucket Histogram in Spatial Database[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1183-1191. DOI: 10.13203/j.whugis20140627
    [6]JIAO Limin, XU Gang, ZHAO Suli, MA Ming, DONG Ting, LI Jiangyue. LUR-based Simulation of the Spatial Distribution of PM2.5of Wuhan[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1088-1094. DOI: 10.13203/j.whugis20130785
    [7]LI Deren, WANG Changwei, HU Yueming, LIU Shuguang. General Review on Remote Sensing-Based Biomass Estimation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 631-635.
    [8]YAN Xun, CHEN Rongguo, CHENG Changxiu, SONG Xiaomei. Optimizer Cost Estimation Framework and Implementation for Spatially-Enabled Database[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 726-730.
    [9]CHENG Changxiu, CHEN Rongguo, ZHU Yanlu. Spatial Selectivity Estimation of Window Query[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 399-402.
    [10]RUAN Zhimin, SUN Zhenbing. Spatial Information Publication Based on Oracle Spatial and SVG[J]. Geomatics and Information Science of Wuhan University, 2004, 29(2): 161-164.

Catalog

    Article views (1053) PDF downloads (91) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return