Citation: | LI Shuang, ZHAI Liang, SANG Huiyong, ZHOU Bin, FANG Xin, ZHEN Yunpeng. An Improved LUR-based Spatial Distribution Simulation for the Large Area PM2.5 Concentration[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1574-1579, 1587. DOI: 10.13203/j.whugis20170042 |
[1] |
Zou B, Pu Q, Bilal M, et al. High-Resolution Sate-llite Mapping of Fine Particulates Based on Geographically Weighted Regression[J].IEEE Geoscience and Remote Sensing Letters, 2016, 13(4):495-499 doi: 10.1109/LGRS.2016.2520480
|
[2] |
Silva R A, West J J, Zhang Y, et al. Global Premature Mortality Due to Anthropogenic Outdoor Air Pollution and the Contribution of Past Climate Change[J].Environmental Research Letters, 2013, 8(3):034005 doi: 10.1088/1748-9326/8/3/034005
|
[3] |
Lim J M, Jeong J H, Lee J H, et al. The Analysis of PM2.5 and Associated Elements and Their Indoor/Outdoor Pollution Status in an Urban Area[J]. Indoor Air, 2011, 21(2):145-155 doi: 10.1111/ina.2011.21.issue-2
|
[4] |
邹滨, 许珊, 张静.融合空间尺度特征的时空序列预测建模方法[J].武汉大学学报·信息科学版, 2017, 42(2):216-222 http://ch.whu.edu.cn/CN/abstract/abstract3391.shtml
Zou Bin, Xu Shan, Zhang Jin. Spatial Variation Analysis of Urban Air Pollution Using GIS:A Land Use Perspective[J].Geomatics and Information Science of Wuhan University, 2017, 42(2):216-222 http://ch.whu.edu.cn/CN/abstract/abstract3391.shtml
|
[5] |
邓敏, 陈倜, 杨文涛.融合空间尺度特征的时空序列预测建模方法[J].武汉大学学报·信息科学版, 2015, 40(12):1625-1632 http://ch.whu.edu.cn/CN/abstract/abstract3391.shtml
Deng Min, Chen Ti, Yang Wentao. A New Method of Modeling Spatio-temporal Sequence by Conside-ring Spatial Characteristics[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12):1625-1632 http://ch.whu.edu.cn/CN/abstract/abstract3391.shtml
|
[6] |
Zou B, Luo Y, Wan N, et al. Performance Compari-son of LUR and OK in PM2.5 Concentration Mapping:A Multidimensional Perspective[J]. Sci Rep, 2015, 5(5):8698
|
[7] |
Briggs D J, Collins S, Elliott P, et al. Mapping Urban Air Pollution Using GIS:A Regression-based Approach[J]. International Journal of Geographi-cal Information Science, 1997, 11(7):699-718 doi: 10.1080/136588197242158
|
[8] |
焦利民, 许刚, 赵素丽, 等.基于LUR的武汉市PM2.5浓度空间分布模拟[J].武汉大学学报·信息科学版, 2015, 40(8):1088-1094 http://ch.whu.edu.cn/CN/abstract/abstract3417.shtml
Jiao Limin, Xu Gang, Zhao Suli, et al. LUR-based Simulation of the Spatial Distribution of PM2.5 of Wuhan[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8):1088-1094 http://ch.whu.edu.cn/CN/abstract/abstract3417.shtml
|
[9] |
Zou B, Xu S, Sternberg T, et al. Effect of Land Use and Cover Change on Air Quality in Urban Sprawl[J].Sustainability, 2016, 8(7):677 doi: 10.3390/su8070677
|
[10] |
Olvera H A, Garcia M, Li W W, et al. Principal Component Analysis Optimization of a PM2.5 Land Use Regression Model with Small Monitoring Network[J]. Sci Total Environ, 2012, 425:27-34 doi: 10.1016/j.scitotenv.2012.02.068
|
[11] |
Ul-Saufie A Z, Yahaya A S, Ramli N A, et al. Future Daily PM10 Concentrations Prediction by Combining Regression Models and Feedforward Backpropagation Models with Principle Component Analysis (PCA)[J]. Atmospheric Environment, 2013, 77:621-630 doi: 10.1016/j.atmosenv.2013.05.017
|
[12] |
Li S, Zhai L, Zou B, et al. A Generalized Additive Model Combining Principal Component Analysis for PM2.5 Concentration Estimation[J]. ISPRS International Journal of Geo-Information, 2017, 6:248 doi: 10.3390/ijgi6080248
|
[13] |
Ghosh D, Manson S M. Robust Principal Component Analysis and Geographically Weighted Regression Urbanization in the Twin Cities Metropolitan Area of Minnesota[J].J Urban Reg Inf Syst Assoc, 2008, 20(1):15-25 https://www.researchgate.net/publication/243970515_Robust_Principal_Component_Analysis_and_Geographically_Weighted_Regression_Urbanization_in_the_Twin_Cities_Metropolitan_Area_of_Minnesota
|
[14] |
朱建平, 殷瑞飞. SPSS在统计分析中的应用[D].北京: 清华大学出版社, 2007
Zhu Jianping, Yin Ruifei. Application of SPSS in Statistical Analysis[D].Beijing: Tsinghua University Press, 2007
|
[15] |
郑咏梅, 张军, 陈星旦, 等.基于逐步回归法的近红外光谱信息提取及模型的研究[J].光谱学与光谱分析, 2004, 24(6):675-678 doi: 10.3321/j.issn:1000-0593.2004.06.010
Zheng Yongmei, Zhang Jun, Chen Xingdan, et al.Reasearch on Model and Wavelength Selection of Near Infrared Spectral Information[J].Spectrosc Spect Anal, 2004, 24(6):675-678 doi: 10.3321/j.issn:1000-0593.2004.06.010
|
[16] |
Zhai L, Zou B, Fang X, et al. Land Use Regression Modeling of PM2.5 Concentrations at Optimized Spatial Scales[J]. Atmosphere, 2017, 8(1):1-15 https://www.researchgate.net/publication/311880812_Land_Use_Regression_Modeling_of_PM25_Concentrations_at_Optimized_Spatial_Scales
|
[17] |
Fang X, Zou B, Liu X, et al. Satellite-based Ground PM2.5 Estimation Using Timely Structure Adaptive Modeling[J]. Remote Sensing of Environment, 2016, 186:152-163 doi: 10.1016/j.rse.2016.08.027
|
[18] |
Rodriguez J D, Perez A, Lozano J A. Sensitivity Analysis of Kappa-fold Cross Validation in Prediction Error Estimation[J].IEEE Trans Pattern Anal Mach Intell, 2010, 32(3):569-575 doi: 10.1109/TPAMI.2009.187
|
[19] |
Olvera H A, Garrcia M, Li W W, et al. Principal Component Analysis Optimization of a PM2.5 Land Use Regression Model with Small Monitoring Network[J]. Science of the Environment, 2012, 425(3):27-34 https://www.ncbi.nlm.nih.gov/pubmed/22464030
|
[1] | WANG Leyang, YU Hang. Weighted Total Least Squares Method for Joint Adjustment Model with Weight Scaling Factor[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1233-1240. DOI: 10.13203/j.whugis20170265 |
[2] | LI Linlin, ZHOU Yongjun, ZHOU Yu. A Weighted Total Least Squares Adjustment Method for Building Regularization[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 422-428. DOI: 10.13203/j.whugis20160510 |
[3] | LIU Chunyang, WANG Jian, WANG Bin, LIU Chao, LIU Jiping. Robust Weight Total Least Squares Algorithm of Correlated Observation Based on Median Parameter Method[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 378-384. DOI: 10.13203/j.whugis20160516 |
[4] | XIE Jian, LONG Sichun, LI Li, LI Bochao. An Aggregate Function Method for Weighted Total Least Squares with Inequality Constraints[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1526-1530. DOI: 10.13203/j.whugis20160507 |
[5] | WANG Leyang, YU Hang. Application of Total Least Squares Joint Adjustment to Volcano Inversion of Mogi Model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1333-1341. DOI: 10.13203/j.whugis20160469 |
[6] | WANG Leyang, XU Guangyu, CHEN Xiaoyong. Total Least Squares Adjustment of Partial Errors-in-Variables Model with Weight Scaling Factor[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 857-863. DOI: 10.13203/j.whugis20150001 |
[7] | WANG Leyang, XU Guangyu. Application of Posteriori Estimation of a Stochastic Model on the Weighted Total Least Squares Problem[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 255-261. DOI: 10.13203/j.whugis20140275 |
[8] | WANG Leyang, XU Caijun. Total Least Squares Adjustment with Weight Scaling Factor[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 887-890. |
[9] | WANG Leyang, XU Caijun, LU Tieding. Ridge Estimation Method in Ill-posed Weighted Total Least Squares Adjustment[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11): 1346-1350. |
[10] | Wang Renxiang. Effects of Parameters of Weight Function for Blunder Detection by the Recursive Weighted Least Squares Method[J]. Geomatics and Information Science of Wuhan University, 1988, 13(4): 42-50. |