WU Xiaobo, YANG Liao, SHEN Jinxiang, WANG Jie. Road Extraction from High-resolution Remote Sensing Images with Spatial Continuity[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1298-1301.
Citation: WU Xiaobo, YANG Liao, SHEN Jinxiang, WANG Jie. Road Extraction from High-resolution Remote Sensing Images with Spatial Continuity[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1298-1301.

Road Extraction from High-resolution Remote Sensing Images with Spatial Continuity

Funds: 国家863计划资助项目(2008AA121504)
More Information
  • Received Date: September 14, 2011
  • Published Date: November 04, 2011
  • A new road extraction algorithm model—RESC(road extraction of spatial continuity) based on the spatial continuity is proposed.It is based on road characteristics of continuous distribution in remote sensing image and adjacent pixel have prior infommtion of spatial autocorrelation,and does not need beforehand offer seed,so it have most automated.The high resolution multi-spectral image and pan remote sensing image were chosen to prove that the method of this study is promising.
  • Related Articles

    [1]LIU Shuo, ZHANG Lei, LI Jian. A Modified Wide Lane Bootstrapping Ambiguity Resolution Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 637-642. DOI: 10.13203/j.whugis20150462
    [2]SHU Bao, LIU Hui, ZHANG Jinsheng, PAN Guofu, JIANG Jun. Performance Assessment of Partial Ambiguity Resolution Based on BDS/GPS Combined Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 989-994, 1001. DOI: 10.13203/j.whugis20150017
    [3]LIU Shuai, SUN Fuping, LI Haifeng, LIU Jing, HAO Wanliang. GLONASS Aided Ambiguity Fixing for Kinematic GPS PPP[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1238-1244. DOI: 10.13203/j.whugis20140494
    [4]ZHANG Liang, LV Hanfeng, WU Jie. Sin gle  Epoch Ambiguit y Resolution Success Rates Under Modified Objective  Function Without Prior Baseline Information[J]. Geomatics and Information Science of Wuhan University, 2014, 39(10): 1184-1188.
    [5]LIU Jingnan, DENG Chenlong, TANG Weiming. Review of GNSS Ambiguity Validation Theory[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1009-1016. DOI: 10.13203/j.whugis20140241
    [6]WU Yue, FU Xiaolin, LI Haijun, LIU Jingbin. Application of TCAR/MCAR Method in Different Baseline Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2007, 32(2): 172-175.
    [7]LI Deren, PENG Mingjun, . Transformation Between Urban Spatial Information Irregular Grid and Regular Grid[J]. Geomatics and Information Science of Wuhan University, 2007, 32(2): 160-163.
    [8]WANG Xinzhou, HUA Xianghong, QIU Lei. A New Method for Integer Ambiguity Resolution in GPS Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 24-26.
    [9]REN Chao, OU Jikun, YUAN Yunbin. A New Method for GPS Ambiguity Resolution on-the-Fly Using Integer Whitening Filter Search[J]. Geomatics and Information Science of Wuhan University, 2004, 29(11): 960-963.
    [10]P. J. G. Teunissen. A New Class of GNSS Ambiguity Estimators[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 757-762.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return