HU Dingli, LI Rui, MENG Yao, WU Huayi. China's Urban Network from the Perspective of Toponym Co-occurrences in the News[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 281-288. DOI: 10.13203/j.whugis20180383
Citation: HU Dingli, LI Rui, MENG Yao, WU Huayi. China's Urban Network from the Perspective of Toponym Co-occurrences in the News[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 281-288. DOI: 10.13203/j.whugis20180383

China's Urban Network from the Perspective of Toponym Co-occurrences in the News

Funds: 

The National Key Research and Development Program of China 2016YFB0502301

the National Natural Science Foundation of China 41771426

More Information
  • Author Bio:

    HU Dingli, master, specializes in geospatial data mining. hudingli@whu.edu.cn

  • Corresponding author:

    LI Rui, PhD, professor. ruili@whu.edu.cn

  • Received Date: June 05, 2019
  • Available Online: July 26, 2023
  • Published Date: February 04, 2020
  • The continuous advancement of economic globalization and informatization, along with the rapid construction of transportation infrastructure, have made cities more closely connected and made urban networking a prominent trend. Network news is easily accessible and contains bundant geographical information. Studying urban networks from the view of toponym co-occurrences in the news is a brand-new perspective, and conclusions may help clarify the status of cities, deepen the understanding of the structure of urban networks. This paper conducts research from contact, node and network successively. Firstly it proposes a new method aiming at measuring relatedness of city pair based on toponym co-occurrences; then it uses the centrality of social network analysis to characterize urban influence and explores its spatial distribution; finally it studies the characteristics and structure of urban networks. Results show that the proposed measurement approach highlights the strength of the relatedness, and makes up for the shortcomings of Ochiia coefficient method such as ignoring multiple diverse toponyms in the news; coastal cities possess higher urban influence than inland ones; the backbone urban network presents an approximately diamond-shaped spatial structure, metropolises such as Beijing, Shanghai, Guangzhou, and Chongqing are the core nodes.
  • [1]
    顾朝林.中国城镇体系:历史、现状、展望[M].北京:商务印书馆, 1992

    Gu Chaolin. China's Urban System:History, Current Situation, Prospects[M]. Beijing:The Commercial Press, 1992
    [2]
    Taylor P J. World City Network:A Global Urban Analysis[M]. New York:Routledge, 2004
    [3]
    陈伟.多元客流视角下的中国城市网络格局[D].长春: 东北师范大学, 2015

    Chen Wei. Spatial Patterns of China's Urban Network from the Perspective of Multiple Passenger Flows[D]. Changchun: Northeast Normal University, 2015
    [4]
    何建华, 施璇, 龚健, 等.顾及空间交互作用的城市群联动空间增长模拟——以武汉都市区为例[J].武汉大学学报·信息科学版, 2016, 41(4):462-467 http://ch.whu.edu.cn/CN/abstract/abstract5415.shtml

    He Jianhua, Shi Xuan, Gong Jian, et al. Modeling the Spatial Expansion of Urban Agglomeration Considering Their Spatial Interaction:A Case Study of Wuhan Metropolitan Area[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4):462-467 http://ch.whu.edu.cn/CN/abstract/abstract5415.shtml
    [5]
    刘瑜, 康朝贵, 王法辉.大数据驱动的人类移动模式和模型研究[J].武汉大学学报·信息科学版, 2014, 39(6):660-666 http://ch.whu.edu.cn/CN/abstract/abstract3011.shtml

    Liu Yu, Kang Chaogui, Wang Fahui. Towards Big Data-Driven Human Mobility Patterns and Models[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6):660-666 http://ch.whu.edu.cn/CN/abstract/abstract3011.shtml
    [6]
    马学广, 李贵才.世界城市网络研究方法论[J].地理科学进展, 2012, 31(2):255-263 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkxjz201202016

    Ma Xueguang, Li Guicai. Research Methods for World City Network and Relevant Inspirations[J]. Progress in Geography, 2012, 31(2):255-263 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkxjz201202016
    [7]
    Yang H R, Frédéric D, Wang J E, et al. Comparing China's Urban Systems in High-Speed Railway and Airline Networks[J]. Journal of Transport Geography, 2018, 68:233-244 doi: 10.1016/j.jtrangeo.2018.03.015
    [8]
    蒋小荣, 杨永春, 汪胜兰, 等.基于上市公司数据的中国城市网络空间结构[J].城市规划, 2017, 41(6):18-26 http://d.old.wanfangdata.com.cn/Periodical/csgh201706003

    Jiang Xiaorong, Yang Yongchun, Wang Shenglan, et al. Spatial Structure of Chinese Intercity Network Based on the Data of Listed Companies[J]. City Planning Review, 2017, 41(6):18-26 http://d.old.wanfangdata.com.cn/Periodical/csgh201706003
    [9]
    Pan F, He Z, Sigler T, et al. How Chinese Financial Centers Integrate into Global Financial Center Networks:An Empirical Study Based on Overseas Expansion of Chinese Financial Service Firms[J]. Chinese Geographical Science, 2018, 28(2):217-230 doi: 10.1007/s11769-017-0913-7
    [10]
    Feng Z, Xia W, Yin J, et al. An Empirical Study on Chinese City Network Pattern Based on Producer Services[J]. Chinese Geographical Science, 2013, 23(3):274-285 doi: 10.1007/s11769-013-0595-8
    [11]
    熊丽芳, 甄峰, 席广亮, 等.我国三大经济区城市网络变化特征——基于百度信息流的实证研究[J].热带地理, 2014, 34(1):34-43 http://d.old.wanfangdata.com.cn/Periodical/rddl201401006

    Xiong Lifang, Zhen Feng, Xi Guangliang, et al. Characteristics of the City Network in the Three Major Economic Zones of China:A Study Based on Baidu Information Flow[J]. Tropical Geography, 2014, 34(1):34-43 http://d.old.wanfangdata.com.cn/Periodical/rddl201401006
    [12]
    Ma H T, Fang C L, Pang B, et al. Structure of Chinese City Network as Driven by Technological Knowledge Flows[J]. Chinese Geographical Science, 2015, 25(4):498-510 doi: 10.1007/s11769-014-0731-0
    [13]
    Zhen F, Wang B, Chen Y X. Research on China's City Network Based on Users' Friend Relationships in Online Social Networks:A Case Study of Sina Weibo[J]. GeoJournal, 2016, 81(6):937-946 doi: 10.1007/s10708-016-9743-x
    [14]
    Liu Y, Wang F, Kang C, et al. Analyzing Relatedness by Toponym Co-occurrences on Web Pages[J]. Transactions in GIS, 2014, 18(1):89-107 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2a224c9ec933e476cb807685503a854c
    [15]
    Yuan Y, Liu Y, Wei G. Exploring Inter-country Connection in Mass Media:A Case Study of China[J]. Computers Environment & Urban Systems, 2017, 62:86-96
    [16]
    Zhong X, Liu J, Gao Y, et al. Analysis of Co-occurrence Toponyms in Web Pages Based on Complex Networks[J]. Physica A Statistical Mechanics & Its Applications, 2017, 466(C):462-475 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9adda7a3da13d9169877bc683a2e28bc
    [17]
    Hu Y, Ye X, Shaw S L. Extracting and Analyzing Semantic Relatedness Between Cities Using News Articles[J]. International Journal of Geographical Information Science, 2017, 31(12):1-25 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/13658816.2017.1367797
    [18]
    窦炳琳, 李澍淞, 张世永.基于结构的社会网络分析[J].计算机学报, 2012, 35(4):741-753 http://d.old.wanfangdata.com.cn/Periodical/jsjxb201204011

    Dou Binglin, Li Shusong, Zhang Shiyong. Social Network Analysis Based on Structure[J]. Chinese Journal of Computers, 2012, 35(4):741-753 http://d.old.wanfangdata.com.cn/Periodical/jsjxb201204011
    [19]
    刘军.整体网分析[M].上海:格致出版社, 2014

    Liu Jun. Overall Network Analysis[M]. Shanghai:Gezhi Publishing House, 2014
    [20]
    Hagen N T. Harmonic Allocation of Authorship Credit:Source-Level Correction of Bibliometric Bias Assures Accurate Publication and Citation Analysis[J]. PLoS One, 2008, 3(12):e4021 doi: 10.1371/journal.pone.0004021
    [21]
    刘彦平.城市影响力及其测度——基于200个中国城市的实证考察[J].城市与环境研究, 2017(1):25-41 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=672499654

    Liu Yanping. Urban Influence and Its Measurement:An Empirical Study Based on 200 Cities in China[J]. Urban and Environmental Studies, 2017(1):25-41 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=672499654
    [22]
    王波, 甄峰.城市实体特征对城市网络空间影响力的作用机制:基于互联网新闻媒体的分析[J].地理科学, 2017, 37(8):1127-1134

    Wang Bo, Zhen Feng. Impacts of City's Characteristics on City's Importance in the Virtual World:An Empirical Analysis Based on Internet News Media[J]. Scientia Geographica Sinica, 2017, 37(8):1127-1134
    [23]
    Wasserman S, Faust K. Social Network Analysis:Methods and Applications[M]. Cambridge:Cambridge University Press, 1994
  • Related Articles

    [1]HE Jian-hua, HUANG Mian, ZHAO Hong-zhuo, CHEN Fei. The Process of Urban Networked Spatial Growth and Its Impact on Regional Ecosystem: A Case Study of Urban Agglomeration in the Middle Reaches of the Yangtze River[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230260
    [2]WANG Yan, LIU Wanjun, TAN Yali, LI Yu. Classification of Urban Functional Areas by Convolution Neural Network Recognition Combined with Sliding Window and Semantic Reasoning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 950-959. DOI: 10.13203/j.whugis20210377
    [3]TIAN Jing, FANG Huaqiang, LIU Jiajia, ZHAO Feng, REN Chang. Robustness Analysis of Urban Street Networks Using Complex Network Method[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 771-777. DOI: 10.13203/j.whugis20150334
    [4]WANG Yandong, FU Xiaokang, LI Mengmeng. A New Social Media Topic Mining Method Based on Co-word Network[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2287-2294. DOI: 10.13203/j.whugis20180225
    [5]TIAN Jing, YU Mengting, REN Chang, XIONG Fuquan. Network-Scape Metric Analysis for Celluar Pattern Analysis in Urban Street Networks[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1588-1594. DOI: 10.13203/j.whugis20150640
    [6]TIAN Jing, WU Xiaohuan, LIN Liupeng, REN Chang. Degree Correlation of Urban Street Networks and Its Relationship with Network Robustness[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 672-678. DOI: 10.13203/j.whugis20150046
    [7]ZHANG Pengdong, SHI Yan, DENG Min, ZHAO Ling. Hierarchical Representation of Urban Road Network Based on Topological Intensity[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 178-183,213. DOI: 10.13203/j.whugis20130798
    [8]JIN Peiquan, ZHANG Xu, YUE Lihua. NBR-tree:A Novel Spatio-temporal Index for Urban Traffic Networks[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2): 147-151.
    [9]LI Qingquan, ZENG Zhe, YANG Bisheng, LIBijun. Betweenness Centrality Analysis for Urban Road Networks[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 37-41.
    [10]WANG Haijun. Network Analysis Based on Affusion Model[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 419-422.
  • Cited by

    Periodical cited type(11)

    1. 唐华仓,张旭. 乡村地名文化的大数据分析及其空间网络分布. 边疆经济与文化. 2024(01): 102-107 .
    2. 盛铭铭,石飞. 网络空间中的城际相互作用距离衰减规律——基于长三角地名共现数据的实证. 地域研究与开发. 2023(03): 60-66 .
    3. 李珊,唐春霞,陈心仪,吴甜甜,柳莺. 基于可拓聚类的银行系统性风险评估研究. 河南科学. 2023(06): 894-903 .
    4. 赵渺希,陈佳鸿,师浩辰,李涛,李莉婷. 区位推荐算法试用于文本地名的空间网络复现——以《三国志》纪传文本为例. 地球信息科学学报. 2023(07): 1386-1404 .
    5. 曹奇. 新时代网络信息背景下高职艺术生思政教育激励机制优化探析. 职业教育(中旬刊). 2023(10): 44-48 .
    6. 曹奇. 新时代网络信息背景下高职艺术生思政教育激励机制优化探析. 职业教育. 2023(29): 44-48 .
    7. 刘畅,郭亮,范在予. 基于网络舆情的特大城市交通问题识别与治理对策探析——以武汉市为例. 城市问题. 2022(06): 77-87 .
    8. 李秋萍,陈宇,栾学晨. 利用网络游记分析不同类型游客的旅游流网络特征差异——以云南省为例. 武汉大学学报(信息科学版). 2022(12): 2143-2152 .
    9. 陈文静,李锐,董广胜,李江. 网络地理信息服务中用户空间访问聚集行为研究. 地球信息科学学报. 2021(01): 93-103 .
    10. 李玲燕,陶进. 多维联系视角下关中平原城市群城市网络结构分析. 资源开发与市场. 2021(11): 1339-1344+1353 .
    11. 岳汉秋,王奇,鲁迪,李玉良. 基于新闻中地名共现网络的中原城市群中尺度结构特征探测. 测绘通报. 2021(11): 81-86 .

    Other cited types(7)

Catalog

    Article views (1704) PDF downloads (131) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return