LU Chuanwei, SUN Qun, JI Xiaolin, XU Li, WEN Bowei, CHENG Mianmian. A Method of Vehicle Trajectory Points Clustering Based on Kernel Distance[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1082-1088. DOI: 10.13203/j.whugis20180361
Citation: LU Chuanwei, SUN Qun, JI Xiaolin, XU Li, WEN Bowei, CHENG Mianmian. A Method of Vehicle Trajectory Points Clustering Based on Kernel Distance[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1082-1088. DOI: 10.13203/j.whugis20180361

A Method of Vehicle Trajectory Points Clustering Based on Kernel Distance

Funds: 

The National Natural Science Foundation of China 41571399

More Information
  • Author Bio:

    LU Chuanwei, PhD candidate, specializes in trajectory data mining and map updating. E-mail: 19wei.90chuan@163.com

  • Corresponding author:

    SUN Qun, PhD, professor. E-mail: 13503712102@163.com

  • Received Date: April 03, 2019
  • Published Date: July 29, 2020
  • Extracting and mining information from vehicle trajectories based on clustering algorithm is of great significance to many applications such as high-precision lane information extraction and update, road congestion analysis and treatment, user trip route planning and recommendation. In view of the shortcomings of the existing clustering algorithms, a vehicle trajectory points clustering method based on kernel distance is proposed. Firstly, we give the definition of vehicle trajectory point. Then the geometric characteristics of vehicle trajectories and the requirements of trajectory clustering are analyzed. Thus, we derive the calculation process of kernel distance based on the definition of kernel function. To clarify the kernel Density?Based Spatial Clustering of Application with Noise (DBSCAN) algorithm, the concepts of kernel neighborhood and core object in DBSCAN algorithm are redefined. Finally, the trajectories of Zhengzhou taxi are used to verify the efficiency of the algorithm. Experiments show that the clustering results had significant advantages in reducing the number of parameters, symmetrical distribution along the central line of road, reducing computing time, extracting long clusters and other aspects. It can effectively cluster the directed trajectory points.
  • [1]
    Edelkamp S, Schrödl S. Route Planning and Map Inference with Global Positioning Traces[M]. Berlin, Heidelberg:Springer, 2003:128-151
    [2]
    Schroedl S, Wagstaff K, Rogers S, et al. Mining GPS Traces for Map Refinement[J]. Data Mining & Knowledge Discovery, 2004, 9(1):59-87 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5f872aa3ffffd2e24322cd0bea2c84bf
    [3]
    Worrall S, Nebot E. Automated Process for Generating Digitised Maps Through GPS Data Compression [C]. Australasian Conference on Robotics and Automation, Brisbane, Australian, 2007
    [4]
    Jang S, Kim T, Lee E. Map Generation System with Lightweight GPS Trace Data[C]. International Conference on Advanced Communication Technology, Gangwon-do, South Korea, 2010
    [5]
    Cao L, Krumm J. From GPS Traces to a Routable Road Map[C]. 17th ACM Sigspatial International Symposium on Advances in Geographic Information Systems, Seattle, Washington, US, 2009
    [6]
    Niehöfer B, Burda R, Wietfeld C, et al. GPS Community Map Generation for Enhanced Routing Methods Based on Trace-Collection by Mobile Phones[C]. 1st International Conference on Advances in Satellite and Space Communications, Colmar, France, 2009
    [7]
    Davies J J, Beresford A R, Hopper A. Scalable, Distributed, Real-Time Map Generation[J]. IEEE Pervasive Computing, 2006, 5(4):47-54 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=053c6bb6e767581aa4714f5efd09b2e2
    [8]
    Wu J W, Zhu Y, Tao K, et al. Detecting Road Intersections from Coarse-gained GPS Traces Based on Clustering[J]. Journal of Computers, 2013, 8(11):2 959-2 965 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a058ed49728b7062baa440525d14be32
    [9]
    马超, 孙群, 陈换新, 等.利用路段分类识别复杂道路交叉口[J].武汉大学学报·信息科学版, 2016, 41(9): 1 232-1 237 doi: 10.13203/j.whugis20160073

    Ma Chao, Sun Qun, Chen Huanxin, et al. Recognition of Road Junctions Based on Road Classification Method[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9):1 232-1 237 doi: 10.13203/j.whugis20160073
    [10]
    杨伟, 艾廷华.众源车辆轨迹加油停留行为探测与加油站点提取[J].测绘学报, 2017, 46(7):918-927 http://d.old.wanfangdata.com.cn/Periodical/chxb201707015

    Yang Wei, Ai Tinghua. Refueling Stop Activity Detection and Gas Station Extraction Using Crowdsourcing Vehicle Trajectory Data[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(7):918-927 http://d.old.wanfangdata.com.cn/Periodical/chxb201707015
    [11]
    Qiu J, Wang R, Wang X. Inferring Road Maps from Sparsely-Sampled GPS Traces[J]. Journal of Location Based Services, 2014, 10(2):111-124 http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC0214236601/
    [12]
    Liu X, Zhu Y, Wang Y, et al. Road Recognition Using Coarse-grained Vehicular Traces[R]. Technical Report HPL-2012-26, CA, USA, 2012
    [13]
    杨伟, 艾廷华.基于众源轨迹数据的道路中心线提取[J].地理与地理信息科学, 2016, 32(3):1-7 doi: 10.3969/j.issn.1672-0504.2016.03.001

    Yang Wei, Ai Tinghua. Road Centerline Extraction from Crowdsourcing Trajectory Data[J]. Geography and Geo-Information Science, 2016, 32(3):1-7 doi: 10.3969/j.issn.1672-0504.2016.03.001
    [14]
    李军, 秦其明, 游林, 等.利用浮动车数据提取停车场位置[J].武汉大学学报·信息科学版, 2013, 38(5):599-603 http://ch.whu.edu.cn/article/id/2637

    Li Jun, Qin Qiming, You Lin, et al. Parking Lot Extraction Method Based on Floating Car[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5):599-603 http://ch.whu.edu.cn/article/id/2637
    [15]
    唐炉亮, 段倩, 阚子涵, 等.出租车交接班行为识别与时空分布研究[J].地球信息科学学报, 2017, 19(2):167-175 http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201702004

    Tang Luliang, Duan Qian, Kan Zihan, et al. Study on Identification and Space-time Distribution Analysis of Taxi Shift Behavior[J]. Journal of Geoinformation Science, 2017, 19(2):167-175 http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201702004
    [16]
    张宪超.数据聚类[M].北京:科学出版社, 2017

    Zhang Xianchao. Data Clustering[M]. Beijing:Science Press, 2017:
    [17]
    Scholkopf B, Smola A J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[M]. MA, USA:MIT press, 2001
    [18]
    Phillips J M, Suresh V. A Gentle Introduction to the Kernel Distance[OL]. https://arxiv.org/abs/1103.1625,2011
    [19]
    Chen D, Phillips J M. Relative Error Embeddings for the Gaussian Kernel Distance[C]. 28th International Conference on Algorithmic Learning Theory, Kyoto, Japan, 2017
    [20]
    Caliński T, Harabasz J. A Dendrite Method for Cluster Analysis[J]. Communications in Statistics, 1974, 3(1):1-27 doi: 10.1080-03610927408827101/
  • Related Articles

    [1]LIU Meng, WANG Zheng-tao. Downward Continuation Iterative Regularization Solution Based on Quasi Optimal Regularization Factor Set[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230127
    [2]XU Xinqiang, ZHAO Jun. A Multi-Parameter Regularization Method in Downward Continuation for Airborne Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 956-963, 973. DOI: 10.13203/j.whugis20180335
    [3]BIAN Shaofeng, WU Zemin. Optimal Tikhonov Regularization Matrix and Its Application in GNSS Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 334-339. DOI: 10.13203/j.whugis20160474
    [4]CHEN Xin, ZHAI Guojun, BAO Jingyang, OUYANG Yongzhong, LU Xiuping, DENG Kailiang. Least Squares Collocation-Tikhonov Regularization Method for the Downward Continuation of Airborne Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 578-585. DOI: 10.13203/j.whugis20150728
    [5]ZENG Xiaoniu, LI Xihai, LIU Zhigang, YANG Xiaojun, LIU Daizhi. Regularization Method for Reduction to the Pole and Components Transformation of Magnetic Anomaly at Low Latitudes[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 388-394. DOI: 10.13203/j.whugis20140342
    [6]Huang Motao, Ouyang Yongzhong, Liu Min, ZHai Guojun, Deng Kailiang. Regularization of Point-Mass Model for Multi-Source Gravity Data Fusion Processing[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2): 170-175.
    [7]TANG Limin, ZHU Jianjun. Regularized Newton Iterative Algorithm for Poisson Model of Soft Clay Embankment Settlement[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 69-73.
    [8]NING Wei, TAO Huaxue, QING Xihong. Faster Difference Iterative Algorithm of Nonlinear Data Processing[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 617-620.
    [9]XU Tianhe, YANG Yuanxi. Robust Tikhonov Regularization Method and Its Applications[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 719-722.
    [10]Bai Yitong. Convergence Of Iterative Solution For Nonlinear Least Squares Adjustment[J]. Geomatics and Information Science of Wuhan University, 1991, 16(2): 92-95.
  • Cited by

    Periodical cited type(9)

    1. 张治豪,王振杰,张世美,王轲. 一种基于重心迭代法的单信标定位方法. 导航定位学报. 2024(06): 20-26 .
    2. Jianjun ZHU,Leyang WANG,Jun HU,Bofeng LI,Haiqiang FU,Yibin YAO. Recent Advances in the Geodesy Data Processing. Journal of Geodesy and Geoinformation Science. 2023(03): 33-45 .
    3. 张建霞,曲国庆,席换,王晖. 距离观测方程非线性平差的正则化共轭梯度法. 山东理工大学学报(自然科学版). 2022(02): 42-46 .
    4. 苏晓庆,徐工. 水下应答器定位的正则化数值算法研究. 工程勘察. 2022(02): 51-57 .
    5. 苏晓庆,徐工. 海底应答器定位的Landweber算法研究. 传感器与微系统. 2022(08): 29-31+36 .
    6. 袁兴明,孙振. 超定测距定位方程参数估计的松弛重心迭代法. 全球定位系统. 2021(01): 7-12 .
    7. 张建霞,曲国庆,席换,王晖. 一种改进的病态测距方程非线性估计的正则化数值迭代法. 山东科技大学学报(自然科学版). 2021(03): 18-25 .
    8. 王乐洋,李志强. 非线性模型精度评定的Bootstrap方法及其加权采样改进方法. 测绘学报. 2021(07): 863-878 .
    9. 杨文龙,薛树强,曲国庆,王薪普,王冠宇. 测距定位方程的多解性及粒子群搜索算法. 导航定位学报. 2020(03): 121-126 .

    Other cited types(5)

Catalog

    Article views (1469) PDF downloads (144) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return