CHEN Xin, ZHAI Guojun, BAO Jingyang, OUYANG Yongzhong, LU Xiuping, DENG Kailiang. Least Squares Collocation-Tikhonov Regularization Method for the Downward Continuation of Airborne Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 578-585. DOI: 10.13203/j.whugis20150728
Citation: CHEN Xin, ZHAI Guojun, BAO Jingyang, OUYANG Yongzhong, LU Xiuping, DENG Kailiang. Least Squares Collocation-Tikhonov Regularization Method for the Downward Continuation of Airborne Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 578-585. DOI: 10.13203/j.whugis20150728

Least Squares Collocation-Tikhonov Regularization Method for the Downward Continuation of Airborne Gravity Data

Funds: 

The National Natural Science Foundation of China 41474012

More Information
  • Author Bio:

    CHEN Xin, PhD candidates, specializes in the data processing of marine gravity survey. E-mail: chenxin3931@163.com

  • Received Date: August 01, 2016
  • Published Date: April 04, 2018
  • The covariance matrix that least-squares collocation is used to the downward continuation of airborne gravity data is ill-conditioned, which influences the reliability and precision of computation results. To solve this problem, the least squares collocation-Tikhonov regularization method for the downward continuation of airborne gravity data is proposed. The functional relationship between airborne gravity data and ground gravity data is established by using the global covariance function model, and the Tikhonov regularization method that the Generalized Cross-Validation (GCV) method is used to select the regularization parameter is introduced, which can improve the ill conditioned covariance matrix and inhibit the amplification impact of ill matrix on observational error. Based on the EGM2008 gravity model, the simulation experiments that airborne gravity anomalies are downward continued to calculate corresponding ground gravity anomalies in mountainous, hill, and sea areas are designed, and the results validate the effectiveness of the proposed method.
  • [1]
    孙中苗. 航空重力测量理论、方法及应用研究[D]. 郑州: 信息工程大学, 2004

    Sun Zhongmiao. Theory, Methods and Applications of Airborne Gravimetry[D]. Zhengzhou: Information Engineering University, 2004
    [2]
    石磐, 王兴涛.利用航空重力测量和DEM确定地面重力场[J].测绘学报, 1997, 26(2):117-121 http://www.cqvip.com/QK/90069X/199702/2532331.html

    Shi Pan, Wang Xingtao. Determination of Terrain Surface Gravity Field Using Airborne Gravimetry and DEM[J].Acta Geodaetica et Cartographica Sinica, 1997, 26(2):117-121 http://www.cqvip.com/QK/90069X/199702/2532331.html
    [3]
    Schwarz K P. Investigation on the Aerial Gravity Data[R]. OSU, USA: OSU Reports, 1973
    [4]
    Keller W, Hirsch M. Downward Continuation Versus Free-Air Reduction in Airborne Gravimetry[M]//Geodesy and Physics of the Earth. Berlin: Springer Berlin Heidelberg, 1993: 266-270
    [5]
    邓凯亮, 黄谟涛, 暴景阳, 等.向下延拓航空重力数据的Tikhonov双参数正则化法[J].测绘学报, 2011, 40(6):690-696 http://www.oalib.com/paper/1679876

    Deng Kailiang, Huang Motao, Bao Jingyang, et al. Tikhonov Two-Parameter Regulation Algorithm in Downward Continuation of Airborne Gravity Data[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(6):690-696 http://www.oalib.com/paper/1679876
    [6]
    王兴涛, 夏哲仁, 石磐, 等.航空重力测量数据向下延拓方法比较[J].地球物理学报, 2004, 47(6):1017-1022 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dqwlxb200406013

    Wang Xingtao, Xia Zheren, Shi Pan, et al. A Comparison of Different Downward Continuation Methods for Airborne Gravity Data[J]. Chinese Journal Geophysics, 2004, 47(6):1017-1022 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dqwlxb200406013
    [7]
    Kern M. An Analysis of the Combination and Downward Continuation of Satellite, Airborne and Terrestrial Gravity Data[R]. UCGE: UCGE Reports, 2003
    [8]
    柳林涛, 许厚泽.航空重力测量数据的小波滤波处理[J].地球物理学报, 2004, 47(3):490-503 doi: 10.3321/j.issn:0001-5733.2004.03.019

    Liu Lintao, Xu Houze. Wavelets Filtering of Airborne Gravimetry Data[J].Chinese Journal Geophysics, 2004, 47(3):490-503 doi: 10.3321/j.issn:0001-5733.2004.03.019
    [9]
    宁津生, 汪海洪, 罗志才.基于多尺度边缘约束的重力场信号的向下延拓[J].地球物理学报, 2005, 48(1):63-68 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200903041.htm

    Ning Jinshen, Wang Haihong, Luo Zhicai. Downward Continuation of Gravity Signals Based on the Multiscale Edge Constraint[J].Chinese Journal Geophysics, 2005, 48(1):63-68 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200903041.htm
    [10]
    Heiskanen W A, Moritz H. Physical Geodesy[M]. San Francisco:Freeman and Company, 1967
    [11]
    邹贤才, 李建成.最小二乘配置方法确定局部大地水准面的研究[J].武汉大学学报·信息科学版, 2004, 29(3):218-222 http://ch.whu.edu.cn/CN/Y2004/V29/I3/218

    Zou Xiancai, Li Jiancheng. A Local Geoid Determination Using Least-Squares Collocation[J].Geomatics and Information Science of Wuhan University, 2004, 29(3):218-222 http://ch.whu.edu.cn/CN/Y2004/V29/I3/218
    [12]
    Forsberg R, Kenyon S C. Evaluation and Downward Continuation of Airborne Gravity Data: the Greenland Example[C]. International Symposium Kinematic Systems in Geodesy, Geomatics and Navigation, Banff, Canada, 1994
    [13]
    翟振和, 孙中苗.基于配置法的局部重力场延拓模型构建与应用分析[J].地球物理学报, 2009, 52(7):1700-1706 doi: 10.3969/j.issn.0001-5733.2009.07.004

    Zhai Zhenhe, Sun Zhongmiao. Continuation Model Construction and Application Analysis of Local Gravity Field Based on Least Square Collocation[J]. Chinese Journal Geophysics, 2009, 52(7):1700-1706 doi: 10.3969/j.issn.0001-5733.2009.07.004
    [14]
    张嗥, 陈琼, 丛明日.航空重力测量数据向下延拓中空间协方差函数特性研究[J].测绘科学, 2006, 31(4):51-53 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201106004.htm

    Zhang Hao, Chen Qiong, Cong Mingri. The Trait Research of Covariance Function in Airborne Gravimetry Downward Continuation[J]. Science of Surveying and Mapping, 2006, 31(4):51-53 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201106004.htm
    [15]
    Forsberg R, Tscherning C C. The Use of Height Data in Gravity Field Approximation by Collocation[J]. Journal of Geophysical Research Solid Earth, 1981, 86(B9):7843-7854 doi: 10.1029/JB086iB09p07843
    [16]
    Knudsen P. Estimation and Modelling of the Local Empirical Covariance Function Using Gravity and Satellite Altimeter Data[J]. Journal of Geodesy, 1987, 61(2):145-160 doi: 10.1007/BF02521264
    [17]
    欧阳永忠. 海空重力测量数据处理关键技术研究[D]. 武汉: 武汉大学, 2013 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chxb201404018&dbname=CJFD&dbcode=CJFQ

    Ouyang Yongzhong. On Key Technologies of Data Processing for Air-Sea Gravity Surveys[D]. Wuhan: Wuhan University, 2013 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chxb201404018&dbname=CJFD&dbcode=CJFQ
    [18]
    李建成, 陈俊勇, 宁津生, 等.地球重力场逼近理论与中国2000似大地水准面的确定[M].武汉:武汉大学出版社, 2003

    Li Jiancheng, Chen Junyong, Ning Jinsheng, et al. Theory of the Earth's Gravity Field Approximation and Determination of China Quasi-Geoid 2000[M]. Wuhan:Wuhan University Press, 2003
    [19]
    陆仲连.地球重力场理论与方法[M].北京:解放军出版社, 1996

    Lu Zhonglian. Theory and Method of Earth's Gravity Field[M]. Beijing:PLA Publishing House, 1996
    [20]
    章传银, 丁剑, 晁定波.局部重力场最小二乘配置通用表示技术[J]武汉大学学报·信息科学版, 2007, 32(5):431-434 http://ch.whu.edu.cn/CN/abstract/abstract1888.shtml

    Zhang Chuanyin, Ding Jian, Chao Dingbo. General Expression of Least Squares Collocation in Local Gravity Filed[J]. Geometrics and Information Science of Wuhan University, 2007, 32(5):431-434 http://ch.whu.edu.cn/CN/abstract/abstract1888.shtml
    [21]
    翟振和. 陆海交界区域多源重力数据的融合处理方法研究[D]. 郑州: 信息工程大学, 2009 http://cdmd.cnki.com.cn/Article/CDMD-90008-1011271081.htm

    Zhai Zhenhe. A Study of the Fusion Algorithms of Multi-source Gravity Data in Coastal Areas[D]. Zhengzhou: Information Engineering University, 2009 http://cdmd.cnki.com.cn/Article/CDMD-90008-1011271081.htm
    [22]
    邓凯亮, 暴景阳, 黄谟涛, 等.航空重力数据向下延拓的Tikhonov正则化法仿真研究[J].武汉大学学报·信息科学版, 2010, 35(12):1414-1417 http://www.cqvip.com/QK/92848A/201012/36228513.html

    Deng Kailiang, Bao Jingyang, Huang Motao, et al. Simulation of Tikhonov Regulation Algorithm in Downward Continuation of Airborne Gravity Data[J].Geometrics and Information Science of Wuhan University, 2010, 35(12):1414-1417 http://www.cqvip.com/QK/92848A/201012/36228513.html
    [23]
    王振杰.测量中不适定问题的正则化解法[M].北京:科学出版社, 2006

    Wang Zhenjie. The Regularization Solutions of Ill-posed Problems in Survey[M]. Beijing:Science Press, 2006
    [24]
    Kilmer M E, O'Leary D P. Choosing Regularization Parameters in Iterative Methods for Ill-Posed Problems[J]. Siam Journal on Matrix Analysis & Applications, 2000, 22(4):1204-1221 https://www.researchgate.net/publication/228747262_Choosing_Regularization_Parameters_in_Iterative_Methods_for_Ill-Posed_Problems
    [25]
    Golub G H, Wahba G. Generalized Cross-Validation as a Method for Choosing a Good Ridge Parameter[J]. Technometrics, 1979, 21(2):215-223 doi: 10.1080/00401706.1979.10489751
    [26]
    Hansen P C, O'Leary D P. The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems[J]. Siam Journal on Scientific Computing, 1993, 14(6):1487-1503 doi: 10.1137/0914086
    [27]
    Pavlis N K, Holmes S A, Kenyon S C, et al. The Development and Evaluation of the Earth Gravitational Model 2008(EGM2008)[J].Journal of Geophysical Research, 2012, 117(B4):531-535 https://www.researchgate.net/publication/232095456_The_Development_and_Evaluation_of_the_Earth_Gravitational_Model_2008_EGM2008_vol_117_B04406_2012
    [28]
    章传银, 郭春喜, 陈俊勇, 等. EGM2008地球重力场模型在中国大陆适用性分析[J].测绘学报, 2009, 38(4):283-289 https://www.wenkuxiazai.com/doc/c32d054189eb172ded63b78b.html

    Zhang Chuanyin, Guo Chunxi, Chen Junyong, et al. EGM2008 and Its Application Analysis in Chinese Mainland[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(4):283-289 https://www.wenkuxiazai.com/doc/c32d054189eb172ded63b78b.html
  • Related Articles

    [1]LIU Meng, WANG Zheng-tao. Downward Continuation Iterative Regularization Solution Based on Quasi Optimal Regularization Factor Set[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230127
    [2]XU Xinqiang, ZHAO Jun. A Multi-Parameter Regularization Method in Downward Continuation for Airborne Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 956-963, 973. DOI: 10.13203/j.whugis20180335
    [3]BIAN Shaofeng, WU Zemin. Optimal Tikhonov Regularization Matrix and Its Application in GNSS Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 334-339. DOI: 10.13203/j.whugis20160474
    [4]CHEN Xin, ZHAI Guojun, BAO Jingyang, OUYANG Yongzhong, LU Xiuping, DENG Kailiang. Least Squares Collocation-Tikhonov Regularization Method for the Downward Continuation of Airborne Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 578-585. DOI: 10.13203/j.whugis20150728
    [5]ZENG Xiaoniu, LI Xihai, LIU Zhigang, YANG Xiaojun, LIU Daizhi. Regularization Method for Reduction to the Pole and Components Transformation of Magnetic Anomaly at Low Latitudes[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 388-394. DOI: 10.13203/j.whugis20140342
    [6]Huang Motao, Ouyang Yongzhong, Liu Min, ZHai Guojun, Deng Kailiang. Regularization of Point-Mass Model for Multi-Source Gravity Data Fusion Processing[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2): 170-175.
    [7]TANG Limin, ZHU Jianjun. Regularized Newton Iterative Algorithm for Poisson Model of Soft Clay Embankment Settlement[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 69-73.
    [8]NING Wei, TAO Huaxue, QING Xihong. Faster Difference Iterative Algorithm of Nonlinear Data Processing[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 617-620.
    [9]XU Tianhe, YANG Yuanxi. Robust Tikhonov Regularization Method and Its Applications[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 719-722.
    [10]Bai Yitong. Convergence Of Iterative Solution For Nonlinear Least Squares Adjustment[J]. Geomatics and Information Science of Wuhan University, 1991, 16(2): 92-95.
  • Cited by

    Periodical cited type(9)

    1. 张治豪,王振杰,张世美,王轲. 一种基于重心迭代法的单信标定位方法. 导航定位学报. 2024(06): 20-26 .
    2. Jianjun ZHU,Leyang WANG,Jun HU,Bofeng LI,Haiqiang FU,Yibin YAO. Recent Advances in the Geodesy Data Processing. Journal of Geodesy and Geoinformation Science. 2023(03): 33-45 .
    3. 张建霞,曲国庆,席换,王晖. 距离观测方程非线性平差的正则化共轭梯度法. 山东理工大学学报(自然科学版). 2022(02): 42-46 .
    4. 苏晓庆,徐工. 水下应答器定位的正则化数值算法研究. 工程勘察. 2022(02): 51-57 .
    5. 苏晓庆,徐工. 海底应答器定位的Landweber算法研究. 传感器与微系统. 2022(08): 29-31+36 .
    6. 袁兴明,孙振. 超定测距定位方程参数估计的松弛重心迭代法. 全球定位系统. 2021(01): 7-12 .
    7. 张建霞,曲国庆,席换,王晖. 一种改进的病态测距方程非线性估计的正则化数值迭代法. 山东科技大学学报(自然科学版). 2021(03): 18-25 .
    8. 王乐洋,李志强. 非线性模型精度评定的Bootstrap方法及其加权采样改进方法. 测绘学报. 2021(07): 863-878 .
    9. 杨文龙,薛树强,曲国庆,王薪普,王冠宇. 测距定位方程的多解性及粒子群搜索算法. 导航定位学报. 2020(03): 121-126 .

    Other cited types(5)

Catalog

    Article views (1627) PDF downloads (294) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return