CHEN Zhengsheng, ZHANG Qinghua, CUI Yang, LI Xuerui, KANG Yingcai. Single Frequency Carrier Smoothing Pseudorange Algorithm and Accuracy Analysis Based on Moving Window[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 964-973. DOI: 10.13203/j.whugis20180324
Citation: CHEN Zhengsheng, ZHANG Qinghua, CUI Yang, LI Xuerui, KANG Yingcai. Single Frequency Carrier Smoothing Pseudorange Algorithm and Accuracy Analysis Based on Moving Window[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 964-973. DOI: 10.13203/j.whugis20180324

Single Frequency Carrier Smoothing Pseudorange Algorithm and Accuracy Analysis Based on Moving Window

Funds: 

The National Natural Science Foundation of China 41604024

The National Natural Science Foundation of China 41674019

The National Natural Science Foundation of China 41804006

State Key Laboratory of Geoinformation Engineering SKLGIE2016-M-2-3

Shanxi Natural Science Foundation 2018JQ4023

More Information
  • Author Bio:

    CHEN Zhengsheng, PhD, specializes in the theories and methods of GNSS data processing and currently hosted research and development of GNSSer software. E-mail:czsgeo@126.com

  • Corresponding author:

    ZHANG Qinghua, PhD. E-mail: sqmha@126.com

  • Received Date: March 15, 2019
  • Published Date: July 29, 2020
  • The traditional single‐frequency carrier phase smoothing pseudorange algorithm is prone to divergence of smoothing results due to the influence of ionospheric delay variation. In this paper, a moving window method is proposed to reduce the influence of unmodeled ionospheric delay, and a mathematical model is established. Formula deduction shows that moving window method can eliminate the influence of ionospheric delay trend term. In the static positioning experiment, the accuracy of this algorithm in three directions of north, east and up is 9.5 cm, 18.0 cm and 13.7 cm, which is 2.4, 1.5 and 3.6 times higher than the original pseudorange positioning results. The results show that the proposed algorithm can significantly reduce the ionospheric influence and greatly improve the positioning accuracy. It is also suitable for both static and dynamic positioning. Its optimal result accuracy is comparable to that of weighted Hatch filtering, but the window selectivity is wider and the result is smoother. On various application scenarios, the uniform smoothing window is recommended for 7 minutes.
  • [1]
    陈浩, 许长辉, 高井祥, 等. BDS、GPS及其组合系统伪距单点定位精度分析[J].山东科技大学学报(自然科学版), 2015, 34(2):72-78 doi: 10.3969/j.issn.1672-3767.2015.02.012

    Chen Hao, Xu Changhui, Gao Jingxiang, et al. Precision Analysis of Pseudorange Single Point Positioning by BDS, GPS and Combined BDS/GPS[J]. Journal of Shandong University of Science and Technology(Natural Science), 2015, 34(2):72-78 doi: 10.3969/j.issn.1672-3767.2015.02.012
    [2]
    高旺, 高成发, 潘树国, 等.基于部分固定策略的多系统长距离基准站间模糊度快速解算[J].武汉大学学报·信息科学版, 2017, 42(4): 558-562 doi: 10.13203/j.whugis20140945

    Gao Wang, Gao Chengfa, Pan Shuguo, et al. Fast Ambiguity Resolution Between GPS/GLONASS/ BDS Combined Long-range Base Stations Based on Partial-fixing Strategy[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 558-562 doi: 10.13203/j.whugis20140945
    [3]
    Hatch R R. The Synergism of GPS Code and Carrier Measurements[C]. International Geodetic Symposium on Satellite Doppler Positioning, New Mexico State University, 1982 https://www.researchgate.net/publication/234386882_The_Synergism_of_GPS_Code_and_Carrier_Measurements
    [4]
    Park B, Sohn K, Kee C. Optimal Hatch Filter with an Adaptive Smoothing Window Width[J]. Journal of Navigation, 2008, 61(3):435-454 doi: 10.1017/S0373463308004694
    [5]
    Kim E, Walter T, Powell J D. Adaptive Carrier Smoothing Using Code and Carrier Divergence[J]. Proceedings of the National Technical Meeting of the Institute of Navigation, 2007(1):22-24 http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC026283757/
    [6]
    徐博, 刘文祥, 廖鸣.一种基于电离层变化率的单频载波相位平滑伪距改进方法[J].中南大学学报(自然科学版), 2014, 45(2):464-467 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201402019

    Xu Bo, Liu Wenxiang, Liao Ming. An Improved Method of Single Frequency Carrier Phase Smoothing Pseudo[J]. Journal of Central South University, 2014, 45(2):464-467 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201402019
    [7]
    赵琳, 李亮, 黄卫权.自适应卡尔曼滤波在载波相位平滑伪距中的应用[J].哈尔滨工程大学学报, 2010, 31(12):1 636-1 641 http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb201012013

    Zhao Lin, Li Liang, Huang Weiquan. An Adaptive Kalman Filtering Algorithm for Carrier Smoothed Code[J]. Journal of Harbin Engineering University, 2010, 31(12):1 636-1 641 http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb201012013
    [8]
    Walter T, Datta-Barua S, Blanch J, et al. The Effects of Large Ionospheric Gradients on Single Frequency Airborne Smoothing Filters for WAAS and LAAS[J]. Proceedings of the National Technical Meeting of the Institute of Navigation, 2004:103-109 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC027741654
    [9]
    Luo M, Pullen S, Dennis J, et al. LAAS Ionosphere Spatial Gradient Threat Model and Impact of LGF and Airborne Monitoring[J]. Proceedings of International Technical Meeting of the Satellite Divi- sion of the Institute of Navigation, 2003:2 255-2 274 https://www.researchgate.net/publication/264840546_LAAS_Ionosphere_Spatial_Gradient_Threat_Model_and_Impact_of_LGF_and_Airborne_Monitoring
    [10]
    Huang Z G, Huang Z G, Zhu Y B, et al. A New Optimal Hatch Filter to Minimize the Effects of Ionosphere Gradients for GBAS[J]. Chinese Journal of Aeronautics, 2008, 21(6):526-532 doi: 10.1016/S1000-9361(08)60170-3
    [11]
    Zhang X, Huang P. Optimal Hatch Filter with an Adaptive Smoothing Time Based on SBAS[C]. International Conference on Soft Computing in Information Communication Technology, Taipei, China, 2014 https://www.researchgate.net/publication/301387702_Optimal_Hatch_Filter_with_an_Adaptive_Smoothing_Time_Based_on_SBAS
    [12]
    郑南山, 李增科.多普勒平滑伪距在GPS/INS紧耦合导航中的应用[J].武汉大学学报·信息科学版, 2014, 39(10):1 158-1 162 http://ch.whu.edu.cn/article/id/3087

    Zheng Nanshan, Li Zengke. Application of Doppler Smoothing Pseudo-Range in GPS/INS Tightly-Coupled Navigation[J]. Geomatics and Information Sci-ence of Wuhan University, 2014, 39(10):1 158-1 162 http://ch.whu.edu.cn/article/id/3087
    [13]
    Li L Y, Lu Z P, Chen Z S. et al. GNSSer:Objected-Oriented and Design Pattern-Based Software for GNSS Data Parallel Processing[J]. Journal of Spatial Science, 2019, DOI:10. 1080/14498596. 2019.1574245
  • Related Articles

    [1]ZHANG Fan, CHAI Hongzhou, WANG Min, XIAO Guorui, ZHANG Qiankun, DU Zhenqiang. Undifferenced and Uncombined PPP Ambiguity Resolution Combined with GPS/GLONASS Triple-Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1900-1910. DOI: 10.13203/j.whugis20220315
    [2]SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030
    [3]SONG Weiwei, ZHAO Xinke, LOU Yidong, SUN Weibin, ZHAO Zhengyu. Performance Evaluation of BDS-3 PPP-B2b Service[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 408-415. DOI: 10.13203/j.whugis20200686
    [4]YAN Zhongbao, ZHANG Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. DOI: 10.13203/j.whugis20220025
    [5]GU Shengfeng, DAI Chunqi, HE Chengpeng, FANG Lizhe, WANG Zihao. Analysis of Semi-tightly Coupled Multi-GNSS PPP-RTK/VIO for Vehicle Navigation in Urban Areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1852-1861. DOI: 10.13203/j.whugis20210615
    [6]YAO Yibin, FENG Xinying, PENG Wenjie, LIU Lei. Local Atmosphere Augmentation Based on CORS for Real-Time PPP[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1739-1748. DOI: 10.13203/j.whugis20180131
    [7]SONG Chao, HAO Jinming. Instantaneous Re-convergence of Kinematic PPP by the Use of Relationship Between Multiple Receiver Ambiguity[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 595-599, 690. DOI: 10.13203/j.whugis20140747
    [8]GUO Fei, ZHANG Xiaohong. Processing Capacity for GPS Data with Clock Slip Using Online PPP Services[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1333-1336.
    [9]TU Rui, HUANG Guanwen, ZHANG Qin, WANG Li. The Research of Dual Frequency Solution Method for Single Frequency Precise Point Positioning(PPP) Based on SEID Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1187-1190.
    [10]ZHAO Jianhu, WANG Shengping, ZHANG Hongmei, WEN Weidong. Long-Distance and On-the-Fly GPS Tidal Level Measurement Based on GPS PPK/PPP[J]. Geomatics and Information Science of Wuhan University, 2008, 33(9): 910-913.
  • Cited by

    Periodical cited type(13)

    1. 冯晓亮,陈欢,李厚芝. 不同观测环境中的多模GNSS数据质量自动化检测方法. 测绘工程. 2024(06): 56-61 .
    2. 刘嘉伟,孙保琪,韩蕊,张喆,王侃,袁海波,杨旭海. GNSS多系统RTK授时性能分析. 导航定位与授时. 2023(03): 49-58 .
    3. 王浩浩,郝明,庄文泉. GNSS实时卫星钟差估计在地震监测中的应用. 导航定位与授时. 2023(03): 108-116 .
    4. 周长江,余海锋,王林伟,雷云平,岳彩亚. 无频间钟偏差改正的BDS-2三频非组合PPP随机模型优化. 测绘通报. 2023(12): 164-168 .
    5. 潘丽静,刘翔,夏川茹,王雷雷. GNSS精密卫星钟差实时估计与分析. 城市勘测. 2021(06): 73-76 .
    6. 郭磊,王甫红,桑吉章,张万威. 一种新的利用历元间位置变化量约束的GNSS导航算法. 武汉大学学报(信息科学版). 2020(01): 21-27 .
    7. 陶钧,张柔. GPS/BeiDou/Galileo/GLONASS实时精密卫星钟差估计. 测绘地理信息. 2020(03): 102-106 .
    8. 黄观文,王浩浩,谢威,曹钰. GNSS实时卫星钟差估计技术进展. 导航定位与授时. 2020(05): 1-9 .
    9. 张浩,赵兴旺,陈佩文,谢毅. GPS/BDS卫星钟差融合解算模型及精度分析. 合肥工业大学学报(自然科学版). 2020(09): 1192-1196 .
    10. 叶珍,李浩军. GNSS卫星钟差估计与结果分析. 导航定位与授时. 2019(03): 88-94 .
    11. 盛剑锋,张彩红,谭凯. 一种全球导航卫星系统钟差估计优化方案的量化研究. 科学技术与工程. 2019(14): 14-21 .
    12. 王尔申,赵珩,曲萍萍,庞涛,孙军. 基于拉格朗日插值法的卫星导航空间信号精度评估算法. 沈阳航空航天大学学报. 2019(04): 43-48 .
    13. 李云,崔文刚. 精密单点定位技术发展及应用. 科学技术与工程. 2019(27): 1-11 .

    Other cited types(10)

Catalog

    Article views PDF downloads Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return