LIU Jiping, ZHANG Yongchuan, XU Shenghua, ZHANG Fuhao, WANG Yong, ZHU Yi, LIU Chunyang. Top-Level Design Study for the Integrated Disaster Reduction Intelligent Service[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2250-2258. DOI: 10.13203/j.whugis20180309
Citation: LIU Jiping, ZHANG Yongchuan, XU Shenghua, ZHANG Fuhao, WANG Yong, ZHU Yi, LIU Chunyang. Top-Level Design Study for the Integrated Disaster Reduction Intelligent Service[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2250-2258. DOI: 10.13203/j.whugis20180309

Top-Level Design Study for the Integrated Disaster Reduction Intelligent Service

Funds: 

The National Key Research and Development Program of China 2016YFC0803101

The National Key Research and Development Program of China 2016YFC0803108

Basic Research Fund of CASM 7771701

More Information
  • Author Bio:

    LIU Jiping, PhD, professor, specializes in geospatial big data for E-government, government geographic information services, emergency geographic information services. E-mail: liujp@casm.ac.cn

  • Corresponding author:

    ZHANG Yongchuan, PhD candidate. E-mail: 532879324@qq.com

  • Received Date: August 28, 2018
  • Published Date: December 04, 2018
  • Geo-spatial information technology can provide data resources, positioning benchmarks, basic framework and key technologies for disaster prevention and reduction. At present, there are some problems in Chinese disaster reduction services. Too much emphasis is placed on decision-ma-king and not on early warning. In addition, the technology, system and application integration of di-saster reduction services is not enough. There is still a lack of a unified understanding and a holistic top-level design guidance framework of disaster reduction services. In order to solve these technical problems of integrated perception, location, integration and comprehensive scene simulation of emergency information such as disaster events, various disaster-bearing bodies, the disaster-pregnant environment, and knowledgeable disaster reduction services, this paper returns to the nature of disaster reduction services, puts forward and explains the concept, connotation and characteristics of the integrated disaster reduction intelligent services from the perspective of surveying, mapping and geoinformation. Besides, an integrated disaster mitigation intelligence services architecture is designed with the consideration of the demand for disaster prevention and reduction services. This enterprise architecture is composed of the perception layer, the technology layer, the system layer and the application layer. Then, this paper forms the intelligence, totalization, integration, accurate, rapid and novelty thinking of disaster reduction services. Finally, the supporting technologies of disaster reduction ser-vices are presented and the comprehensive disaster reduction system is introduced. The proposed top-level design for the integrated disaster reduction intelligent services can solve the integrated perception, positioning, integration and simulation of the scene, and intellectualized disaster reduction ser-vices and other technical problems.
  • [1]
    范维澄, 闪淳昌.公共安全与应急管理[M].北京:科学出版社, 2017

    Fan Weicheng, Shan Cunchang. Public Safety and Emergency Management[M]. Beijing:Science Press, 2017
    [2]
    朱庆, 曹振宇, 林珲, 等.应急测绘保障体系若干关键问题研究[J].武汉大学学报·信息科学版, 2014, 39(5): 551-555 http://ch.whu.edu.cn/CN/abstract/abstract2975.shtml

    Zhu Qing, Cao Zhenyu, Lin Hui, et al. Key Technologies of Emergency Surveying and Mapping Service System[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5):551-555 http://ch.whu.edu.cn/CN/abstract/abstract2975.shtml
    [3]
    郑功成.切实贯彻实施《国家综合防灾减灾规划(2016—2020年)》[J].中国减灾, 2017(1): 14-15 doi: 10.3969/j.issn.1002-4549.2017.01.004

    Zheng Chenggong. Implement the National Comprehensive Disaster Prevention and Mitigation Plan (2016-2020)[J]. Disaster Reduction in China, 2017(1): 14-15 doi: 10.3969/j.issn.1002-4549.2017.01.004
    [4]
    Faraj S, Xiao Y. Coordination in Fast-Response Organizations[J]. Management Science, 2006, 52(8): 1 155-1 169 doi: 10.1287/mnsc.1060.0526
    [5]
    Martinis S, Kersten J, Twele A. A Fully Automated TerraSAR-X Based Flood Service[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 104: 203-212 doi: 10.1016/j.isprsjprs.2014.07.014
    [6]
    Ajmar A, Boccardo P, Disabato F, et al. Rapid Mapping:Geomatics Role and Research Opportunities[J]. Rendiconti Lincei, 2015, 26(1): 63-73 http://d.old.wanfangdata.com.cn/Periodical/syjsygl201601057
    [7]
    李德仁, 王密, 沈欣, 等.从对地观测卫星到对地观测脑[J].武汉大学学报·信息科学版, 2017, 42(2): 143-149 http://ch.whu.edu.cn/CN/abstract/abstract5653.shtml

    Li Deren, Wang Mi, Shen Xin, et al. From Earth Observation Satellite to Earth Observation Brain[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 143-149 http://ch.whu.edu.cn/CN/abstract/abstract5653.shtml
    [8]
    Gasparini P, Manfredi G, Zschau J. Earthquake Early Warning Systems[M]. Berlin: Springer, 2007
    [9]
    Allen R M, Gasparini P, Kamigaichi O, et al. The Status of Earthquake Early Warning Around the World: An Introductory Overview[J]. Seismological Research Letters, 2009, 80(5): 682-693 doi: 10.1785/gssrl.80.5.682
    [10]
    Jeon H I, Kim Y. BOP (Beacon-Only Period) and Beacon Scheduling for MEU (Mesh-Enabled USN) Devices[C]. The 9th International Conference on Advanced Communication Technology, Pnoenix Park, Korea, 2007 https://www.researchgate.net/publication/224702534_BOP_Beacon-Only_Period_and_beacon_scheduling_for_MEU_Mesh-Enabled_USN_devices
    [11]
    Jang M, Suh S T. U-city: New Trends of Urban Planning in Korea Based on Pervasive and Ubiquitous Geotechnology and Geoinformation[C]. International Conference on Computational Science and Its Applications, Hong Kong, China, 2010 http://www.springerlink.com/content/09536l5474203736
    [12]
    陈锐志, 陈亮.基于智能手机的室内定位技术的发展现状和挑战[J].测绘学报, 2017, 46(10): 1 316-1 326 http://d.old.wanfangdata.com.cn/Periodical/chxb201710014

    Chen Ruizhi, Chen Liang.Indoor Positioning with Smartphones : The State-of-the-Art and the Challenges[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1 316-1 326 http://d.old.wanfangdata.com.cn/Periodical/chxb201710014
    [13]
    Han H, Wang J. Robust GPS/BDS/INS Tightly Coupled Integration with Atmospheric Constraints for Long-Range Kinematic Positioning[J]. GPS Solutions, 2017, 21(3): 1 285-1 299 doi: 10.1007/s10291-017-0612-y
    [14]
    Yu H, Wang J, Wang B, et al. Generalized Total Kalman Filter Algorithm of Nonlinear Dynamic Errors-in-Variables Model with Application on Indoor Mobile Robot Positioning[J]. Acta Geodaetica et Geophysica, 2018, 53(1): 107-123 doi: 10.1007/s40328-017-0207-7
    [15]
    朱庆, 韩会鹏, 于杰, 等.应急测绘无人机资源多目标优化调度方法[J].武汉大学学报·信息科学版, 2017, 42(11): 1 608-1 615 http://ch.whu.edu.cn/CN/abstract/abstract5876.shtml

    Zhu Qing, Han Huipeng, Yu Jie, et al. Multi-objective Optimization Scheduling Method for UAV Resources in Emergency Surveying and Mapping[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1 608-1 615 http://ch.whu.edu.cn/CN/abstract/abstract5876.shtml
    [16]
    Liu M, Zhu J, Zhu Q, et al. Optimization of Simulation and Visualization Analysis of Dam-failure Flood Disaster for Diverse Computing Systems[J]. International Journal of Geographical Information Science, 2018, 11(2): 179-194 doi: 10.1080/13658816.2017.1334897
    [17]
    Zhang H, Zhu J, Zhu Q, et al. A Template-Based Knowledge Reuse Method for Generating Multitype 3D Railway Scenes[J]. International Journal of Digital Earth, 2018, 11(2): 179-194 doi: 10.1080/17538947.2017.1305458
    [18]
    Qiu L, Du Z, Zhu Q, et al. An Integrated Flood Management System Based on Linking Environmental Models and Disaster-related Data[J]. Environmental Modelling & Software, 2017, 91: 111-126 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f12e68b78becb2af7668a0b3f7a82e3b
    [19]
    郭仁忠, 应申.论ICT时代的地图学复兴[J].测绘学报, 2017, 46(10): 1 274-1 283 http://d.old.wanfangdata.com.cn/Periodical/chxb201710009

    Guo Renzhong, Ying Shen. The Rejuvenation of Cartography in ICT Era[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1 274-1 283 http://d.old.wanfangdata.com.cn/Periodical/chxb201710009
    [20]
    武芳, 巩现勇, 杜佳威.地图制图综合回顾与前望[J].测绘学报, 2017, 46(10):1 645-1 664 http://d.old.wanfangdata.com.cn/Periodical/chxb201710045

    Wu Fang, Gong Xianyong, Du Jiawei. Overview of the Research Progress in Automated Map Generalization[J].Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1 645-1 664 http://d.old.wanfangdata.com.cn/Periodical/chxb201710045
    [21]
    Li Z, Wang F, Zheng X, et al. GIS Based Dynamic Modeling of Fire Spread with Heterogeneous Cellular Automation Model and Standardized Emergency Management Protocol[C]. The 3rd ACM SIGSPATIAL International Workshop on the Use of GIS in Emergency Management, Redondo Beach, California, USA, 2017 https://www.researchgate.net/publication/321737469_GIS_Based_Dynamic_Modeling_of_Fire_Spread_with_Heterogeneous_Cellular_Automation_Model_and_Standardized_Emergency_Management_Protocol
    [22]
    Li Z, Wang F, Zheng X, et al. GIS Based Dynamic Modeling of Fire Spread with Cellular Automation Model[C]. The 25th International Conference on Geoinformatics, Buffalo, NY, USA, 2017 https://www.researchgate.net/publication/321230363_GIS_based_dynamic_modeling_of_fire_spread_with_cellular_automation_model
    [23]
    王艳东, 李昊, 王腾, 等.基于社交媒体的突发事件应急信息挖掘与分析[J].武汉大学学报·信息科学版, 2016, 41(3):290-297 http://ch.whu.edu.cn/CN/abstract/abstract4565.shtml

    Wang Yandong, Li Hao, Wang Teng, et al. The Mi-ning and Analysis of Emergency Information in Sudden Events Based on Social Media[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3):290-297 http://ch.whu.edu.cn/CN/abstract/abstract4565.shtml
    [24]
    范一大.重大自然灾害应急空间数据共享机制研究[M].北京:科学出版社, 2014

    Fan Yida. Research on Spatial Data Sharing Mechanism for Major Natural Disaster Emergency Response[M]. Beijing: Science Press, 2014
    [25]
    宋长青, 程昌秀, 史培军.新时代地理复杂性的内涵[J].地理学报, 2018, 73(7): 1 204-1 213 http://d.old.wanfangdata.com.cn/Periodical/dlxb201807002

    Song Changqing, Cheng Changxiu, Shi Peijun. Geography Complexity: New Connotations of Geography in the New Era[J]. Acta Geographica Sinica, 2018, 73(7): 1 204-1 213 http://d.old.wanfangdata.com.cn/Periodical/dlxb201807002
    [26]
    张晓翔, 毕微微, 袁宏永, 等.防灾减灾信息化顶层设计研究[J].中国安全科学学报, 2015, 25(3):159-164 http://d.old.wanfangdata.com.cn/Periodical/zgaqkxxb201503026

    Zhang Xiaoxiang, Bi Weiwei, Yuan Hongyong, et al. Study on Top Level Design of Informatization Construction for Disaster Prevention and Mitigation[J]. China Safety Science Journal, 2015, 25(3):159-164 http://d.old.wanfangdata.com.cn/Periodical/zgaqkxxb201503026
  • Related Articles

    [1]WANG Nan, LI Yongsheng, SHEN Wenhao, JIANG Wenliang, LI Qiang, JIAO Qisong. Source Parameters and Rapid Simulation of Strong Ground Motion of the Ms6.8 Earthquake on January 7, 2025 in Dingri (Xizang,China) Derived from InSAR Observation[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 404-411. DOI: 10.13203/j.whugis20250022
    [2]LIU Xiaojie, ZHAO Chaoying, LI Bin, WANG Wenda, ZHANG Qin, GAO Yang, CHEN Liquan, WANG Baohang, HAO Junming, YANG Xiaohui. Identification and Dynamic Deformation Monitoring of Active Landslides in Jishishan Earthquake Area (Gansu, China) Using InSAR Technology[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 297-312. DOI: 10.13203/j.whugis20240054
    [3]YANG Mengshi, LIAO Mingsheng, CHANG Ling, HANSSEN Ramon F.. Interpretation of Multi-epoch InSAR Deformation for Urban Scenes: A Problem Analysis and Literature Review[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1643-1660. DOI: 10.13203/j.whugis20230289
    [4]CHEN Mingkai, XU Guangyu, WANG Leyang. InSAR 3D Coseismic Surface Deformation Inversion: A Combination Method Considering Deformation Gradient[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1349-1358. DOI: 10.13203/j.whugis20220284
    [5]XIAO Ruya, HE Xiufeng. Deformation Monitoring of Reservoirs and Dams Using Time-Series InSAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1334-1341. DOI: 10.13203/j.whugis20170327
    [6]LIU Qi, YUE Guosen, DING Xiaobing, YANG Kun, FENG Guangcai, XIONG Zhiqiang. Temporal and Spatial Characteristics Analysis of Deformation Along Foshan Subway Using Time Series InSAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1099-1106. DOI: 10.13203/j.whugis20190025
    [7]CAO Haikun, ZHAO Lihua, ZHANG Qin, QU Wei, NIE Jianliang. Ascending and Descending Orbits InSAR-GPS Data Fusion Method with Additional Systematic Parameters for Three-Dimensional Deformation Field[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1362-1368. DOI: 10.13203/j.whugis20160461
    [8]LI Peng, LI Zhenhong, LI Tao, SHI Chuang, LIU Jingnan. Wide-Swath InSAR Geodesy and Its Applications to Large-Scale Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1195-1202. DOI: 10.13203/j.whugis20150587
    [9]XU Caijun, HE Ping, WEN Yangmao, ZHANG Lei. Coseismic Deformation and Slip Distribution for 2011 Tohoku-Oki Mw 9.0 Earthquake:Constrained by GPS and InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1387-1391.
    [10]XU Caijun, HE Ping, WEN Yangmao, YANG Yonglin. Crustal Deformation Monitoring of Xianshuihe Fault by CR-InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 302-305.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (1140) PDF downloads (267) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return