LIU Qi, YUE Guosen, DING Xiaobing, YANG Kun, FENG Guangcai, XIONG Zhiqiang. Temporal and Spatial Characteristics Analysis of Deformation Along Foshan Subway Using Time Series InSAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1099-1106. DOI: 10.13203/j.whugis20190025
Citation: LIU Qi, YUE Guosen, DING Xiaobing, YANG Kun, FENG Guangcai, XIONG Zhiqiang. Temporal and Spatial Characteristics Analysis of Deformation Along Foshan Subway Using Time Series InSAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1099-1106. DOI: 10.13203/j.whugis20190025

Temporal and Spatial Characteristics Analysis of Deformation Along Foshan Subway Using Time Series InSAR

Funds: 

The Fundamental Research Funds for the Central Universities of Central South University 2017zzts774

the National Natural Science Foundation of China 41574005

More Information
  • Author Bio:

    LIU Qi, postgraduate, specializes in InSAR data processing and analysis. E-mail:165012110@csu.edu.cn

  • Corresponding author:

    FENG Guangcai, PhD, associate professor. E-mail: fredgps@csu.edu.cn

  • Received Date: February 19, 2019
  • Published Date: July 04, 2019
  • As a city with rapid economic development and urbanization in China's Pearl River Delta region, Foshan has been affected by land subsidence disasters for a long time due to its fragile geological and hydrological conditions. At the same time, the subway in the region is an important tool to alleviate the traffic pressure of the city. The ground subsidence caused by its construction and operation affects the safety of people's lives and property. However, there are not many systematic studies on this aspect in Foshan, and there is insufficient understanding of the settlement law along the subway. This paper uses fixed-point data to monitor the deformation information of Foshan from June 2015 to September 2018. The results show that the surface deformation of Foshan is sporadic, and there is no large-scale settlement funnel. The deformation rate is between 5 mm/a and -20 mm/a, and the settlement rate of local area is over -30 mm/a.Land subsidence is mainly related to unstable geological structures, groundwater extraction and local area construction. Based on the obtained deformation results, this paper also studies the deformation along the subway in Foshan city, and analyzes the settlement of the collapse section of Foshan subway in 2018, and expounds the cause of the difference in the space along the subway. In the time, the model parameters are inversed in the deformation along the subway. This paper provides a reference for the local government to carry out the survey of surface deformation and the early warning of subsidence disasters. And it provides a theoretical basis for the safety monitoring of the normal operation and maintenance of the subway.
  • [1]
    Alex N, Wang H, Dai Y W, et al. InSAR Reveals Land Deformation at Guangzhou and Foshan, China Between 2011 and 2017 with COSMO-SkyMed Data[J]. Remote Sensing, 2018, 10(6):813-836 doi: 10.3390/rs10060813
    [2]
    董好刚, 黄长生, 陈雯珠, 等.珠江三角洲环境地质控制性因素及问题分析[J].中国地质, 2012, 39(2):539-549 doi: 10.3969/j.issn.1000-3657.2012.02.025

    Dong Haogang, Huang Changsheng, Chen Wenzhu, et al. Analysis of Environmental Geological Control Factors and Problems in the Pearl River Delta[J]. Chinese Geology, 2012, 39(2): 539-549 doi: 10.3969/j.issn.1000-3657.2012.02.025
    [3]
    易顺民, 梁池生.广东省地质灾害及防治[M].北京:科学出版社, 2010

    Yi Shunmin, Liang Chisheng. Geological Hazards and Prevention in Guangdong Province[M]. Beijing: Science Press, 2010
    [4]
    Feng G C, Li Z W, Xu B, et al. Coseismic Deformation of the 2015 Mw6.4 Pishan, China, Earthquake Estimated from Sentinel-1A and ALOS2 Data[J]. Seismological Research Letters, 2016, 87(4): 800-806 doi: 10.1785/0220150264
    [5]
    Du Y N, Feng G C, Peng X, et al. Subsidence Evolution of the Leizhou Peninsula, China, Based on InSAR Observation from 1992 to 2010[J]. Applied Sciences, 2017, 7(5):466-484 doi: 10.3390/app7050466
    [6]
    王华, 喻永平, 蒋利龙.利用合成孔径雷达干涉监测广州佛山地面沉降[J].测绘科学, 2014, 39(7):67-71 http://d.old.wanfangdata.com.cn/Periodical/chkx201407015

    Wang Hua, Yu Yongping, Jiang Lilong. Using Synthetic Aperture Radar Interferometry to Monitor Land Subsidence in Foshan, Guangzhou[J]. Surveying and Mapping Science, 2014, 39(7): 67-71 http://d.old.wanfangdata.com.cn/Periodical/chkx201407015
    [7]
    Wang H Q, Feng G C, Xu B, et al. Deriving Spatio-Temporal Development of Ground Subsidence Due to Subway Construction and Operation in Delta Regions with PS-InSAR Data: A Case Study in Guangzhou, China[J]. Remote Sensing, 2017, 9(10):1 004-1 016 doi: 10.3390/rs9101004
    [8]
    秦晓琼, 杨梦诗, 廖明生, 等.应用PSInSAR技术分析上海道路网沉降时空特性[J].武汉大学学报·信息科学版, 2017, 42(2): 170-177 http://ch.whu.edu.cn/CN/abstract/abstract5657.shtml

    Qin Xiaoqiong, Yang Mengshi, Liao Mingsheng, et al. Exploring Temporal-Spatial Characteristics of Shanghai Road Networks Settlement with Multi-temporal PSInSAR Technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 170-177 http://ch.whu.edu.cn/CN/abstract/abstract5657.shtml
    [9]
    王茹, 杨天亮, 杨梦诗, 等. PS-InSAR技术对上海高架路的沉降监测与归因分析[J].武汉大学学报·信息科学版, 2018, 43(12): 2 050-2 057 http://ch.whu.edu.cn/CN/abstract/abstract6289.shtml

    Wang Ru, Yang Tianliang, Yang Mengshi, et al. Attribution Analysis on Deformation Feature of the Shanghai Elevated Highway by Persistent Scatterer SAR Interferometry[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2 050-2 057 http://ch.whu.edu.cn/CN/abstract/abstract6289.shtml
    [10]
    段光耀, 刘欢欢, 宫辉力, 等.京津城际铁路沿线不均匀地面沉降演化特征[J].武汉大学学报·信息科学版, 2017, 42(12): 1 847-1 853 http://ch.whu.edu.cn/CN/abstract/abstract5910.shtml

    Duan Guangyao, Liu Huanhuan, Gong Huili, et al. Evolution Characteristics of Uneven Land Subsidence Along Beijing-Tianjin Inter-City Railway[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12):1 847-1 853 http://ch.whu.edu.cn/CN/abstract/abstract5910.shtml
    [11]
    姚衍桃, 詹文欢, 刘再峰, 等.珠江三角洲的新构造运动及其与三角洲演化的关系[J].华南地震, 2008, 28(1):29-40 doi: 10.3969/j.issn.1001-8662.2008.01.004

    Yao Yantao, Zhan Wenhuan, Liu Zaifeng, et al. Neotectonics in the Pearl River Delta and Its Relationship with Delta Evolution[J]. South China Earthquake Research, 2008, 28(1): 29-40 doi: 10.3969/j.issn.1001-8662.2008.01.004
    [12]
    Xu B, Feng G C, Li Z W, et al. Coastal Subsidence Monitoring Associated with Land Reclamation Using the Point Target Based SBAS-InSAR Method: A Case Study of Shenzhen, China[J]. Remote Sensing, 2016, 8(8):652-670 doi: 10.3390/rs8080652
    [13]
    Ferretti A, Prati C, Rocca F. Permanent Scatterers in SAR Interferometry[J]. Remote Sensing, 2001, 39(1): 8-20 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_fa07af7c653e4e41534e6a20e57046e7
    [14]
    Li Z W, Ding X L, Huang C, et al. Improved Filtering Parameter Determination for the Goldstein Radar Interferogram Filter[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(6):621-634 doi: 10.1016/j.isprsjprs.2008.03.001
    [15]
    Ferretti A, Prati C, Rocca F. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2 202-2 212 doi: 10.1109/36.868878
    [16]
    张路, 廖明生, 董杰, 等.基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别——以四川丹巴为例[J].武汉大学学报·信息科学版, 2018, 43(12): 2 039-2 049 http://ch.whu.edu.cn/CN/abstract/abstract6288.shtml

    Zhang Lu, Liao Mingsheng, Dong Jie, et al. Early Detection of Landslide Hazards in Mountainous Areas of West China Using Time Series SAR Interferometry—A Case Study of Danba, Sichuan[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2 039-2 049 http://ch.whu.edu.cn/CN/abstract/abstract6288.shtml
    [17]
    吴波.复杂条件下城市地铁隧道施工地表沉降研究[D].成都: 西南交通大学, 2003

    Wu Bo. Research on Ground Settlement of Urban Subway Tunnel Construction Under Complicated Conditions[D]. Chengdu: Southwest Jiaotong University, 2003
    [18]
    Yang Z F, Li Z W, Zhu J J, et al. Deriving Dynamic Subsidence of Coal Mining Areas Using InSAR and Logistic Model[J]. Remote Sensing, 2017, 9(2):125-142 doi: 10.3390/rs9020125
  • Related Articles

    [1]LI Da, QU Wei, ZHANG Qin, LI Jiuyuan, LING Qing. Landslide Displacement Prediction Model Integrating Multi-layer Perceptron and Optimized Support Vector Regression[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1380-1388. DOI: 10.13203/j.whugis20210703
    [2]ZHANG Yixiao, ZHAO Zhongguo, ZHENG Jianghua. Estimation of Reference Crop Evapotranspiration Under Different Combination of Meteorological Elements Using Multivariate Adaptive Regression Splines[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 789-798. DOI: 10.13203/j.whugis20190337
    [3]XU Shan, ZOU Bin, WANG Min, LIU Ning. Performance Comparison of Artificial Neural Network and Kriging in Spatial Estimation of PM2.5 Concentration[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1642-1650. DOI: 10.13203/j.whugis20180482
    [4]XU Yanfang, LIU Wenyao, WU Bing, HUANG Min. Application of Neural Network in Color Conversion[J]. Geomatics and Information Science of Wuhan University, 2006, 31(9): 799-801.
    [5]YU Liang, BIAN Fuling. Application of Rough Set-Based Neural Network in Forest Fire Alarm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(8): 720-723.
    [6]HU Yaogai, LI Wei, HU Jiming. An Artificial Neural Network with Improved Activation Function and Its Application[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 916-919.
    [7]SHAO Lixia, HE Zongyi, AI Zixing, SONG Xiaodong. Automatic Generalization of River Network Based on BP Neural Network Techniques[J]. Geomatics and Information Science of Wuhan University, 2004, 29(6): 555-557.
    [8]XIAO Ping, LI Deren. Land Use/Cover Change Detection Based on Artificial Neural Network[J]. Geomatics and Information Science of Wuhan University, 2002, 27(6): 586-590.
    [9]Shen Weiming, Zhang Zuxun, Zhang Jianqing. Image Matching by Neural Network Based Relaxation[J]. Geomatics and Information Science of Wuhan University, 1996, 21(3): 247-251.
    [10]Huang Wenqian. Recognition of Point-shaped Map Symbols with a New Neural Network Model[J]. Geomatics and Information Science of Wuhan University, 1996, 21(1): 46-49.
  • Cited by

    Periodical cited type(1)

    1. 吴静,傅优杰,程朋根. 基于粗糙集的局部同位模式挖掘算法. 测绘通报. 2022(10): 80-85+104 .

    Other cited types(3)

Catalog

    Article views (2061) PDF downloads (434) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return