Citation: | LIU Qi, YUE Guosen, DING Xiaobing, YANG Kun, FENG Guangcai, XIONG Zhiqiang. Temporal and Spatial Characteristics Analysis of Deformation Along Foshan Subway Using Time Series InSAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1099-1106. DOI: 10.13203/j.whugis20190025 |
[1] |
Alex N, Wang H, Dai Y W, et al. InSAR Reveals Land Deformation at Guangzhou and Foshan, China Between 2011 and 2017 with COSMO-SkyMed Data[J]. Remote Sensing, 2018, 10(6):813-836 doi: 10.3390/rs10060813
|
[2] |
董好刚, 黄长生, 陈雯珠, 等.珠江三角洲环境地质控制性因素及问题分析[J].中国地质, 2012, 39(2):539-549 doi: 10.3969/j.issn.1000-3657.2012.02.025
Dong Haogang, Huang Changsheng, Chen Wenzhu, et al. Analysis of Environmental Geological Control Factors and Problems in the Pearl River Delta[J]. Chinese Geology, 2012, 39(2): 539-549 doi: 10.3969/j.issn.1000-3657.2012.02.025
|
[3] |
易顺民, 梁池生.广东省地质灾害及防治[M].北京:科学出版社, 2010
Yi Shunmin, Liang Chisheng. Geological Hazards and Prevention in Guangdong Province[M]. Beijing: Science Press, 2010
|
[4] |
Feng G C, Li Z W, Xu B, et al. Coseismic Deformation of the 2015 Mw6.4 Pishan, China, Earthquake Estimated from Sentinel-1A and ALOS2 Data[J]. Seismological Research Letters, 2016, 87(4): 800-806 doi: 10.1785/0220150264
|
[5] |
Du Y N, Feng G C, Peng X, et al. Subsidence Evolution of the Leizhou Peninsula, China, Based on InSAR Observation from 1992 to 2010[J]. Applied Sciences, 2017, 7(5):466-484 doi: 10.3390/app7050466
|
[6] |
王华, 喻永平, 蒋利龙.利用合成孔径雷达干涉监测广州佛山地面沉降[J].测绘科学, 2014, 39(7):67-71 http://d.old.wanfangdata.com.cn/Periodical/chkx201407015
Wang Hua, Yu Yongping, Jiang Lilong. Using Synthetic Aperture Radar Interferometry to Monitor Land Subsidence in Foshan, Guangzhou[J]. Surveying and Mapping Science, 2014, 39(7): 67-71 http://d.old.wanfangdata.com.cn/Periodical/chkx201407015
|
[7] |
Wang H Q, Feng G C, Xu B, et al. Deriving Spatio-Temporal Development of Ground Subsidence Due to Subway Construction and Operation in Delta Regions with PS-InSAR Data: A Case Study in Guangzhou, China[J]. Remote Sensing, 2017, 9(10):1 004-1 016 doi: 10.3390/rs9101004
|
[8] |
秦晓琼, 杨梦诗, 廖明生, 等.应用PSInSAR技术分析上海道路网沉降时空特性[J].武汉大学学报·信息科学版, 2017, 42(2): 170-177 http://ch.whu.edu.cn/CN/abstract/abstract5657.shtml
Qin Xiaoqiong, Yang Mengshi, Liao Mingsheng, et al. Exploring Temporal-Spatial Characteristics of Shanghai Road Networks Settlement with Multi-temporal PSInSAR Technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 170-177 http://ch.whu.edu.cn/CN/abstract/abstract5657.shtml
|
[9] |
王茹, 杨天亮, 杨梦诗, 等. PS-InSAR技术对上海高架路的沉降监测与归因分析[J].武汉大学学报·信息科学版, 2018, 43(12): 2 050-2 057 http://ch.whu.edu.cn/CN/abstract/abstract6289.shtml
Wang Ru, Yang Tianliang, Yang Mengshi, et al. Attribution Analysis on Deformation Feature of the Shanghai Elevated Highway by Persistent Scatterer SAR Interferometry[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2 050-2 057 http://ch.whu.edu.cn/CN/abstract/abstract6289.shtml
|
[10] |
段光耀, 刘欢欢, 宫辉力, 等.京津城际铁路沿线不均匀地面沉降演化特征[J].武汉大学学报·信息科学版, 2017, 42(12): 1 847-1 853 http://ch.whu.edu.cn/CN/abstract/abstract5910.shtml
Duan Guangyao, Liu Huanhuan, Gong Huili, et al. Evolution Characteristics of Uneven Land Subsidence Along Beijing-Tianjin Inter-City Railway[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12):1 847-1 853 http://ch.whu.edu.cn/CN/abstract/abstract5910.shtml
|
[11] |
姚衍桃, 詹文欢, 刘再峰, 等.珠江三角洲的新构造运动及其与三角洲演化的关系[J].华南地震, 2008, 28(1):29-40 doi: 10.3969/j.issn.1001-8662.2008.01.004
Yao Yantao, Zhan Wenhuan, Liu Zaifeng, et al. Neotectonics in the Pearl River Delta and Its Relationship with Delta Evolution[J]. South China Earthquake Research, 2008, 28(1): 29-40 doi: 10.3969/j.issn.1001-8662.2008.01.004
|
[12] |
Xu B, Feng G C, Li Z W, et al. Coastal Subsidence Monitoring Associated with Land Reclamation Using the Point Target Based SBAS-InSAR Method: A Case Study of Shenzhen, China[J]. Remote Sensing, 2016, 8(8):652-670 doi: 10.3390/rs8080652
|
[13] |
Ferretti A, Prati C, Rocca F. Permanent Scatterers in SAR Interferometry[J]. Remote Sensing, 2001, 39(1): 8-20 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_fa07af7c653e4e41534e6a20e57046e7
|
[14] |
Li Z W, Ding X L, Huang C, et al. Improved Filtering Parameter Determination for the Goldstein Radar Interferogram Filter[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(6):621-634 doi: 10.1016/j.isprsjprs.2008.03.001
|
[15] |
Ferretti A, Prati C, Rocca F. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2 202-2 212 doi: 10.1109/36.868878
|
[16] |
张路, 廖明生, 董杰, 等.基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别——以四川丹巴为例[J].武汉大学学报·信息科学版, 2018, 43(12): 2 039-2 049 http://ch.whu.edu.cn/CN/abstract/abstract6288.shtml
Zhang Lu, Liao Mingsheng, Dong Jie, et al. Early Detection of Landslide Hazards in Mountainous Areas of West China Using Time Series SAR Interferometry—A Case Study of Danba, Sichuan[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2 039-2 049 http://ch.whu.edu.cn/CN/abstract/abstract6288.shtml
|
[17] |
吴波.复杂条件下城市地铁隧道施工地表沉降研究[D].成都: 西南交通大学, 2003
Wu Bo. Research on Ground Settlement of Urban Subway Tunnel Construction Under Complicated Conditions[D]. Chengdu: Southwest Jiaotong University, 2003
|
[18] |
Yang Z F, Li Z W, Zhu J J, et al. Deriving Dynamic Subsidence of Coal Mining Areas Using InSAR and Logistic Model[J]. Remote Sensing, 2017, 9(2):125-142 doi: 10.3390/rs9020125
|
[1] | LI Da, QU Wei, ZHANG Qin, LI Jiuyuan, LING Qing. Landslide Displacement Prediction Model Integrating Multi-layer Perceptron and Optimized Support Vector Regression[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1380-1388. DOI: 10.13203/j.whugis20210703 |
[2] | ZHANG Yixiao, ZHAO Zhongguo, ZHENG Jianghua. Estimation of Reference Crop Evapotranspiration Under Different Combination of Meteorological Elements Using Multivariate Adaptive Regression Splines[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 789-798. DOI: 10.13203/j.whugis20190337 |
[3] | XU Shan, ZOU Bin, WANG Min, LIU Ning. Performance Comparison of Artificial Neural Network and Kriging in Spatial Estimation of PM2.5 Concentration[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1642-1650. DOI: 10.13203/j.whugis20180482 |
[4] | XU Yanfang, LIU Wenyao, WU Bing, HUANG Min. Application of Neural Network in Color Conversion[J]. Geomatics and Information Science of Wuhan University, 2006, 31(9): 799-801. |
[5] | YU Liang, BIAN Fuling. Application of Rough Set-Based Neural Network in Forest Fire Alarm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(8): 720-723. |
[6] | HU Yaogai, LI Wei, HU Jiming. An Artificial Neural Network with Improved Activation Function and Its Application[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 916-919. |
[7] | SHAO Lixia, HE Zongyi, AI Zixing, SONG Xiaodong. Automatic Generalization of River Network Based on BP Neural Network Techniques[J]. Geomatics and Information Science of Wuhan University, 2004, 29(6): 555-557. |
[8] | XIAO Ping, LI Deren. Land Use/Cover Change Detection Based on Artificial Neural Network[J]. Geomatics and Information Science of Wuhan University, 2002, 27(6): 586-590. |
[9] | Shen Weiming, Zhang Zuxun, Zhang Jianqing. Image Matching by Neural Network Based Relaxation[J]. Geomatics and Information Science of Wuhan University, 1996, 21(3): 247-251. |
[10] | Huang Wenqian. Recognition of Point-shaped Map Symbols with a New Neural Network Model[J]. Geomatics and Information Science of Wuhan University, 1996, 21(1): 46-49. |
1. |
吴静,傅优杰,程朋根. 基于粗糙集的局部同位模式挖掘算法. 测绘通报. 2022(10): 80-85+104 .
![]() |