TAO Yeqing, WANG Jian, LIU Chao. A Solution for Ground Subsidence Prediction of Time Series Based on Autoregression EIV Model with Inequality Constraints[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1455-1460. DOI: 10.13203/j.whugis20180268
Citation: TAO Yeqing, WANG Jian, LIU Chao. A Solution for Ground Subsidence Prediction of Time Series Based on Autoregression EIV Model with Inequality Constraints[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1455-1460. DOI: 10.13203/j.whugis20180268

A Solution for Ground Subsidence Prediction of Time Series Based on Autoregression EIV Model with Inequality Constraints

Funds: 

The National Natural Science Foundation of China 41601501

The National Natural Science Foundation of China 41874029

The National Natural Science Foundation of China 41404004

the Natural Science Foundation for Colleges and Universities of Jiangsu Province 16KJD420001

Science Foundation of Jiangsu Provincial Department of Construction 2017ZD259

More Information
  • Author Bio:

    TAO Yeqing, PhD, associate professor, specializes in the theories and methods of surveying adjustment. E-mail: yenneytao@163.com

  • Received Date: July 12, 2018
  • Published Date: September 04, 2020
  • Ground subsidence monitoring is an effective method to forecast geological hazard, and time series model is the main model for ground subsidence prediction. To take into account both the observation errors existing in coefficient matrix and observation vector, in this contribution, the time series model of ground subsidence is developed to improve errors-in-variables (EIV) model, while the traditional model only takes into account the observation error existing in observation error. Besides, to improve efficiency and accuracy of computation model parameters, prior information is utilized to establish EIV model with inequality constraints, and the inequality constraints model for ground subsidence prediction is converted into quadratic programming of nonlinear model. And the iterative algorithm which is combined with median function is proposed. The efficiency and feasibility of the presented algorithm are verified through the instances, which are compared with the traditional least squares estimation algorithm and current algorithm for EIV model.
  • [1]
    李达, 邓喀中, 高晓雄, 等.基于SBAS-InSAR的矿区地表沉降监测与分析[J].武汉大学学报·信息科学版, 2018, 43(10): 1 531-1 537 doi: 10.13203/j.whugis20160566

    Li Da, Deng Kazhong, Gao Xiaoxiong, et al. Monitoring and Analysis of Surface Subsidence in Mining Area Based on SBAS-InSAR[J].Geomatics and Information Science of Wuhan University, 2018, 43(10): 1 531-1 537 doi: 10.13203/j.whugis20160566
    [2]
    Zahmatkesh A, Choobbasti A J. Evaluation of Wall Deflections and Ground Surface Settlements in Deep Excavations[J]. Arabian Journal of Geosciences, 2015, 8 (5): 3 055-3 063 doi: 10.1007/s12517-014-1419-6
    [3]
    Moeinossadat S R, Ahangari K, Shahriar K. Control of Ground Settlements Caused by EPBS Tunneling Using an Intelligent Predictive Model[J]. Indian Geotechnical Journal, 2017(5):1-10 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=568fc128a04881fa01eb87670e610051
    [4]
    向巍, 郭际明, 傅露.基于垂直距离最小二乘拟合的双曲线沉降模型[J].武汉大学学报·信息科学版, 2013, 38(5):571-574 http://ch.whu.edu.cn/article/id/2645

    Xiang Wei, Guo Jiming, Fu Lu. Hyperbolic Settlement Model Based on Least-Squares Orthogonal Distances Fitting[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5):571-574 http://ch.whu.edu.cn/article/id/2645
    [5]
    王建民, 张锦.基于高斯过程回归的变形智能预测模型及应用[J].武汉大学学报·信息科学版, 2018, 43(2):248-254 doi: 10.13203/j.whugis20160075

    Wang Jianmin, Zhang Jin. Deformation Intelligent Prediction Model Based on Gaussian Process Regression and Application[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2):248-254 doi: 10.13203/j.whugis20160075
    [6]
    段光耀, 刘欢欢, 宫辉力, 等.京津城际铁路沿线不均匀地面沉降演化特征[J].武汉大学学报·信息科学版, 2017, 42(12): 1 847-1 853 doi: 10.13203/j.whugis20150537

    Duan Guangyao, Liu Huanhuan, Gong Huili, et al. Evolution Characteristics of Uneven Land Subsidence Along Beijing-Tianjin Inter-city Railway[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1 847-1 853 doi: 10.13203/j.whugis20150537
    [7]
    Amiri-Simkooei A R. Application of Least Squares Variance Component Estimation to Errors-in-Variables Models[J]. Journal of Geodesy, 2013, 87(12):935-944 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6125d49648f95a639a2e805c2d7c295d
    [8]
    Zhang S L, Tong X H, Zhang K L, et al. A Solution to EIV Model with Inequality Constraints and Its Geodetic Applications[J]. Journal of Geodesy, 2013, 87(1): 23-28 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=786335433327bf83c48572ded36e0eb0
    [9]
    Fang Xing, Li Bofeng, Alkhatib H, et al.Bayesian Inference for the Errors-in-Variables Model[J].Studia Geophysica et Geodaetica, 2016, 61(1): 1-18 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=102db1aba60e81971988fd72bf7c253a
    [10]
    王乐洋, 李海燕, 温扬茂, 等.地震同震滑动分布反演的总体最小二乘方法[J].测绘学报, 2017, 46(3):307-315 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201703006

    Wang Leyang, Li Haiyan, Wen Yangmao, et al. Total Least Squares Method Inversion for Coseismic Slip Distribution[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3):307-315 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201703006
    [11]
    Schaffrin B, Wieser A. On Weighted Total Least-Squares Adjustment for Linear Regression[J]. Journal of Geodesy, 2008, 82(7):415-421 doi: 10.1007/s00190-007-0190-9
    [12]
    姚宜斌, 熊朝晖, 张豹, 等.顾及设计矩阵误差的AR模型新解法[J].测绘学报, 2017, 46(11):1 795-1 801 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201711001

    Yao Yibin, Xiong Zhaohui, Zhang Bao, et al. A New Method to Solving AR Model Parameters Considering Random Errors of Design Matrix[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(11): 1 795-1 801 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201711001
    [13]
    Rousseeuw P, Wagner J. Robust Regression with a Distribution Intercept Using Least Median of Squares[J]. Computational Statistics & Data Analysis, 1994, 17:65-76
    [14]
    Fang Xing. On Non-combinatorial Weighted Total Least Squares with Inequality Constraints[J]. Journal of Geodesy, 2014, 88(8):805-816 doi: 10.1007/s00190-014-0723-y
    [15]
    Schaffrin B. A Note on Constrained Total Least-Squares Estimation[J]. Linear Algebra & Its Applications, 2006, 417(1):245-258 http://cn.bing.com/academic/profile?id=ba532e7ef9374a84fe38b7b5fe362c35&encoded=0&v=paper_preview&mkt=zh-cn
    [16]
    许文源, 王东谦.带有线性不等式约束的最小二乘[J].系统科学与数学, 1984, 4 (1):55-62 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001694665

    Xu Wenyuan, Wang Dongqian. Least Square Estimation with Linear Inequality Constraints[J]. Journal of Systems Science and Mathematical Sciences, 1984, 4 (1):55-62 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001694665
  • Related Articles

    [1]NIU Lei, SONG Yiquan, ZHANG Hongmin, HOU Shaoyang. A Hilbert-Curve-Based R* Tree Index Optimized for Indoor Evacuation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1416-1421. DOI: 10.13203/j.whugis20160352
    [2]daijing, wu mingguang, zheng peibei, wang lei, cui dengj i, chen taisheng. an improved str-tree  spatial  index al gorithm based on hilbert-curve[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7): 777-781.
    [3]GUO Qingsheng, HUANG Yuanlin, ZHANG Liping. The Method of Curve Bend Recognition[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6): 596-599.
    [4]LEI Weigang, TONG Xiaohua, LIU Dajie. Data Process Methods of Line Feature Generalization Based on Curve Fit[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 896-899.
    [5]ZHAO Xiuping, Phil Green. Evaluating Acceptability Threshold and Weighting for Color Difference on Gloss Paper Reproduction[J]. Geomatics and Information Science of Wuhan University, 2006, 31(9): 814-817.
    [6]WU Hehai. Multi-way Tree Structure Based on Curve Generalization Method[J]. Geomatics and Information Science of Wuhan University, 2004, 29(6): 479-483.
    [7]WANG Xinzhou, TANG Zhong'an, CHEN Zhihui. εm-Band Based on Spline Fitting Function of Anomalous Curves in GIS[J]. Geomatics and Information Science of Wuhan University, 2004, 29(1): 58-62.
    [8]TONG Xiaohua, LIU Dajie. Combined Adjustment Models of Road Curve Digitization in GIS[J]. Geomatics and Information Science of Wuhan University, 2001, 26(1): 64-69.
    [9]Wang Kongzheng, Wang Jiexian. An Algorithm for Error-band Determination of Curves in GIS[J]. Geomatics and Information Science of Wuhan University, 1999, 24(2): 142-144.
    [10]Liu Wenbao, Huang Youcai, Li Zonghua. On Measuring Complexity of Digital Curves and Separating Stochastic Part from Trend Movement of Digitizing Process[J]. Geomatics and Information Science of Wuhan University, 1995, 20(4): 289-295.
  • Cited by

    Periodical cited type(26)

    1. 王盼龙,侯汶材,蒋光伟,王斌,程传录,李康. 顾及起算点误差的区域参考框架约束方法研究. 大地测量与地球动力学. 2024(01): 39-45 .
    2. 杨承志,张晓明,张鸽. 基于WLS-KF的UWB室内定位滤波算法研究. 电子测量与仪器学报. 2024(01): 25-33 .
    3. 姜颖颖,潘树国,孟骞,高旺. 基于鲁棒马氏距离统计量的多源融合抗差估计方法. 仪器仪表学报. 2024(02): 252-262 .
    4. 李圣英,孟骞,姜颖颖,王立辉. 故障修复增强的抗差滤波PDR/GNSS行人导航方法. 仪器仪表学报. 2024(02): 233-242 .
    5. 林雪原,刘丽丽,董云云,陈祥光,杨海利. 改进的GNSS/SINS组合导航系统自适应滤波算法. 武汉大学学报(信息科学版). 2023(01): 127-134 .
    6. 沈子涵,赵修斌,张闯,张良,刘鑫贤. 基于长短期记忆神经网络的自适应容错方法. 系统工程与电子技术. 2023(03): 831-838 .
    7. 刘原华,刘浩,牛新亮. 卫星导航自适应抗差滤波算法. 信息技术与信息化. 2022(06): 213-217 .
    8. 朱璐瑛,孙炜玮,刘成铭,孙兆玮. 多传感器组合导航系统的联邦UKF算法研究. 电子测量与仪器学报. 2022(07): 91-98 .
    9. 李霜,张敬霞,付贵,樊亚,张成龙. 小米8手机在城市环境下的单点定位精度研究. 导航定位学报. 2022(05): 160-169 .
    10. 代晓霁,李敏,徐天河,江楠,许艳. 复杂环境下的UWB/PDR紧组合定位方法. 导航定位学报. 2022(06): 18-26 .
    11. 蔡保杰,邵雷. 三段判别域与最小二乘拟合的抗差滤波算法. 系统工程与电子技术. 2021(05): 1346-1353 .
    12. 葛宝爽,张海,唐志坤. 基于新息异常检测的改进抗差自适应卡尔曼滤波算法. 导航定位与授时. 2020(01): 48-54 .
    13. 蔡保杰,邵雷,李正杰. 采用卡方检验和牛顿插值的抗差卡尔曼滤波新算法. 空军工程大学学报(自然科学版). 2020(01): 38-43 .
    14. 赵修斌,高超,庞春雷,张闯,王勇. BP神经网络辅助的缓变故障双阈值检测法. 控制与决策. 2020(06): 1384-1390 .
    15. 贺军义,杨丰,安葳鹏,尚家泽. 基于IGGⅢ方案的自适应渐消卡尔曼滤波器. 计算机工程与应用. 2020(14): 52-56 .
    16. 蔡保杰,邵雷,李佳伟,李正杰. 基于牛顿插值的抗差卡尔曼滤波算法. 导航定位学报. 2020(05): 49-56 .
    17. 刘韬,徐爱功,隋心,王长强. 新息向量的抗差Kalman滤波方法及其在UWB室内导航中的应用. 武汉大学学报(信息科学版). 2019(02): 233-239 .
    18. 陈国通,范圆圆,刘琪. 一种改进的无迹Kalman滤波在SINS/GPS组合导航中的应用. 宇航总体技术. 2019(01): 23-28 .
    19. 闫伟,牛小骥,旷俭. 光源编码+PDR组合的室内行人定位方法. 测绘通报. 2019(05): 7-11+54 .
    20. 张闯,赵修斌,庞春雷,冯波,高超. LS-SVM辅助的小幅值及缓变故障检测与容错方法. 中国惯性技术学报. 2019(03): 415-420 .
    21. 张建,喻国荣,潘树国,闫志跃,王彦恒. 基于卡方检验的GNSS观测值部分粗差抗差滤波算法. 仪器仪表学报. 2019(08): 102-109 .
    22. 刘韬,徐爱功,隋心. 基于自适应抗差卡尔曼滤波的UWB室内定位. 传感技术学报. 2018(04): 567-572 .
    23. 胡方强,吕涛,包亚萍. 改进的自适应Kalman滤波在SINS/GPS组合导航中的应用. 计算机工程与应用. 2018(05): 253-257+264 .
    24. 陶贤露,张小红,朱锋,肖佳敏. 一种基于加表零偏稳定性的GNSS/SINS组合导航异常探测方法. 武汉大学学报(信息科学版). 2018(07): 1078-1084 .
    25. 韩亚坤,文鸿雁,张艺航,陈冠宇,周吕. 基于卡方检验的抗差自适应Kalman滤波在变形监测中的应用. 大地测量与地球动力学. 2017(06): 604-608 .
    26. 邹敏,王国栋,刘超. 抗差自适应Kalman滤波及其在GNSS导航中的应用. 河北工程大学学报(自然科学版). 2016(03): 89-93 .

    Other cited types(24)

Catalog

    Article views (1049) PDF downloads (58) Cited by(50)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return