ZHANG Yandong, XU Caijun, WANG Jianjun. An Iterative Least Squares Method Based on the F-J Inversion for Linear-Non-Linear Models[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1816-1822. DOI: 10.13203/j.whugis20180117
Citation: ZHANG Yandong, XU Caijun, WANG Jianjun. An Iterative Least Squares Method Based on the F-J Inversion for Linear-Non-Linear Models[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1816-1822. DOI: 10.13203/j.whugis20180117

An Iterative Least Squares Method Based on the F-J Inversion for Linear-Non-Linear Models

Funds: 

The National Key Research and Development Program of China 2018YFC1503605

the National Natural Science Foundation of China 41431069

the National Natural Science Foundation of China 41574002

the National Natural Science Foundation of China 41774011

More Information
  • Author Bio:

    ZHANG Yandong, master, majors in inversion algorithms for geophysical and geodetic data. E-mail:ydzhang@whu.edu.cn

  • Corresponding author:

    WANG Jianjun, PhD, associate professor, specializes in earthquake stress triggering.E-mail:jjwang@sgg.whu.edu.cn

  • Received Date: December 24, 2018
  • Published Date: December 04, 2019
  • Fukuda and Johnson (2010) proposed an inversion method associated with the Bayesian theory (hereinafter termed the F-J method) for linear-non-linear geophysical/geodetic problems. Since then this method has been widely applied to estimating globally optimal parameters and their precisions for linearnon-linear geophysical/geodetic models. Yet for the application of the F-J method the choice of Markov chain Monte Carlo (MCMC) sampling parameters somewhat affects the invered results. Additionally, searching the most appropriate sampling parameters is time-consuming. On the other hand, an iterative least squares method can also be applied to the inversion for linear-non-linear models if their non-linear parameters are linearized beforehand. However, this method depends on optimum initial values. To make full use of the advantages of the both methods, here we propose a hybrid method termed as the iterative least squares with initial values constrained by using the F-J method. The proposed method refers to the calculation of linear-nonlinear parameters using the F-J method just one time and to refining those parameters using the iterative least squares method a few times. Thus, it reduces the computation time relevant to the F-J method on the one hand and gains a global solution after a few times of employing the iterative least squares method on the other hand. To verify the efficacy of the hybrid method, we make comparisons using synthetic and real data sets. We employ the F-J method, iterative least squares method with random initial values and iterative least squares method with initial values provided by the F-J method, respectively. Our results show that:(1) the choice of sampling parameters indeed affects the results by using the F-J method; (2) based on the iterative least squares method with random initial values, inverted results generally diverge and sometimes converge to wrong results for some synthetic tests, and (3) using the iterative least squares method with initial values provided by the F-J method produces converged results without the dependence on MCMC sampling parameters and initial values, as expected thanks to absorbing the merits of the global optimality of the F-J method and efficiency of the iterative least squares method.
  • [1]
    许才军, 大地测量联合反演理论和方法研究进展[J].武汉大学学报·信息科学版, 2001, 26(6):555-561 http://ch.whu.edu.cn/CN/abstract/abstract5232.shtml

    Xu Caijun. Progress of Joint Inversion on Geodesy and Geophysics[J]. Geomatics and Information Science of Wuhan University, 2001, 26(6):555-561 http://ch.whu.edu.cn/CN/abstract/abstract5232.shtml
    [2]
    Fukuda J, Johnson K M. A Fully Bayesian Inversion for Spatial Distribution of Fault Slip with Objective Smoothing[J]. Bulletin of the Seismological Society of America, 2008, 98(3):1128-1146 doi: 10.1785/0120070194
    [3]
    Fukuda J, Johnson K M. Mixed Linear-Non-Linear Inversion Crustal Deformation Data: Bayesian Inference of Model, Weighting and Regularization Parameters[J]. Geophysical Journal International, 2010, 181(3):1441-1458 http://cn.bing.com/academic/profile?id=6fa2ca1e5794f8891e4f605ac6a940e4&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    Du Y, Segall P, Aydin A. Comparison of Various Inversion Techniques as Applied to the Determination of a Geophysical Deformation Model for the 1983 Borah Peak Earthquake[J]. Bulletin of the Seismological Society of America, 1992, 82(4):1840-1866 http://cn.bing.com/academic/profile?id=1a8d759197dcb54712aa44832d9a97af&encoded=0&v=paper_preview&mkt=zh-cn
    [5]
    Freymueller J, King N E, Segall P. The Co-seismic Slip Distribution of the Landers Earthquake[J]. Bulletin of the Seismological Society of America, 1994, 84(3):646-659 http://cn.bing.com/academic/profile?id=af4c80ad80b916a562356856dff04366&encoded=0&v=paper_preview&mkt=zh-cn
    [6]
    Jonsson S, Zebker H, Segall P, et al. Fault Slip Distribution of the 1999 Mw 7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4):1377-1389 doi: 10.1785/0120000922
    [7]
    Wright T J, Lu Z, Wicks C. Constraining the Slip Distribution and Fault Geometry of the Mw 7.9, 3 November 2002, Denali Fault Earthquake with Interferometric Synthetic Aperture Radar and Global Positioning System Data[J]. Bulletin of the Seismological Society of America, 2004, 94(6B):175-189 doi: 10.1785/0120040623
    [8]
    Simons M, Fialko Y, Rivera L. Coseismic Deformation from the 1999 Mw 7.1 Hector Mine, California, Earthquake as Inferred from InSAR and GPS Observations[J]. Bulletin of the Seismological Society of America, 2002, 92(4):1390-1402 doi: 10.1785/0120000933
    [9]
    Xu Caijun, Ding Kaihua, Cai Jianqing, et al. Methods of Determining Weight Scaling Factors for Geodetic-Geophysical Joint Inversion[J]. Journal of Geodynamics, 2009, 47(1):39-46 doi: 10.1016/j.jog.2008.06.005
    [10]
    Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equation of State Calculations by Fast Computing Machines[J]. The Journal of Chemical Physics, 1953, 21(6):1087-1092 doi: 10.1063/1.1699114
    [11]
    王乐洋.基于总体最小二乘的大地测量反演理论及应用研究[D].武汉: 武汉大学, 2011 http://www.cnki.com.cn/Article/CJFDTotal-CHXB201204029.htm

    Wang Leyang. Research on Theory and Application of Total Least Squares in Geodetic Inversion[D].Wuhan: Wuhan University, 2011 http://www.cnki.com.cn/Article/CJFDTotal-CHXB201204029.htm
    [12]
    Yamakawa N. On the Strain Produced in a Semi-infinite Elastic Solid by an Interior Source of Stress[J]. Zisin, 1955, 2(8):84-98 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_39860
    [13]
    Scarpa R, Tilling R I. Monitoring and Mitigation of Volcano Hazards[M]. Berlin: Springer-Verlag, 1996:373-402
    [14]
    胡亚轩, 王庆良, 崔笃信, 等.三种压力源模型对火山区地面变形的影响[J].东北地震研究, 2005, 21(3):33-38 doi: 10.3969/j.issn.1674-8565.2005.03.003

    Hu Yaxuan, Wang Qingliang, Cui Duxin, et al. Influences on Surface Deformation by the Three Different Stress Source Models in Volcanic Area[J]. Seismological Research of Northeast China, 2005, 21(3):33-38 doi: 10.3969/j.issn.1674-8565.2005.03.003
    [15]
    Hagiwara Y. The Mogi Model as a Possible Cause of the Crustal Uplift in the Eastern Part of Izu Peninsula and the Related Gravity Change[J]. Bulletin of the Earthquake Research Institute, 1977, 52:301-309
    [16]
    陈国浒.长白山天池火山形变监测与模拟研究[D].北京: 中国地震局地质研究所, 2007 http://cdmd.cnki.com.cn/article/cdmd-85402-2007090274.htm

    Chen Guohu. Deformation Monitoring and Simulation Research of the Tianchi Volcano in the Changbaishan Mountains[D]. Beijing: Institute of Geology, China Earthquake Administration, 2007 http://cdmd.cnki.com.cn/article/cdmd-85402-2007090274.htm
    [17]
    Savage J C, Burford R O. Geodetic Determination of Relative Plate Motion in Central California[J]. Journal of Geophysical Research, 1973, 78(5):832-845 doi: 10.1029/JB078i005p00832
  • Related Articles

    [1]MAO Ning, LI An, XU Jiangning, QIN Fangjun, LI Fangneng. Observability Analysis and Robust Fusion Algorithms of INS/Gravity Integrated Navigation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2113-2121. DOI: 10.13203/j.whugis20230075
    [2]GUO Ying, ZHOU Zhenping, CUI Jianhui, XIE Yongqiang, SU Yuan. A UWB Positioning Method Based on Improved Robust Adaptive Filtering[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230354
    [3]LI Raobo, YUAN Xiping, GAN Shu, BI Rui, GAO Sha, HU Lin. A Method for Solving Point Cloud Registration Models Using Dual Quaternion Descriptions of Point‑Planar Feature Constraints[J]. Geomatics and Information Science of Wuhan University, 2023, 48(9): 1546-1554. DOI: 10.13203/j.whugis20210184
    [4]WANG Yongbo, WANG Yunjia, SHE Wenwen, HAN Xinzhe. A Linear Features-Constrained, Plücker Coordinates-Based, Closed-Form Registration Approach to Terrestrial LiDAR Point Clouds[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1376-1384. DOI: 10.13203/j.whugis20160408
    [5]HOU Xiang, MIN Lianquan. A Robust Watermarking Algorithm Using SURF Feature Regions[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 421-426. DOI: 10.13203/j.whugis20140508
    [6]TIAN Jing, WU Xiaohuan, LIN Liupeng, REN Chang. Degree Correlation of Urban Street Networks and Its Relationship with Network Robustness[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 672-678. DOI: 10.13203/j.whugis20150046
    [7]WANG Mi, YANG Bo, JIN Shuying. A Registration Method Based on Object-Space Positioning Consistency for Satellite Multi-spectral Image[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 765-769.
    [8]LIAO Haibin, CHEN Qinghu, WANG Hongyong. Robust Face Recognition by Fusion Local Deformable Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(7): 877-881.
    [9]WEI Weimin, LIANG Guanglan, TANG Zhenjun, WANG Shuozhong. Robust Watermarking Method Based on Lapped Orthogonal Transform[J]. Geomatics and Information Science of Wuhan University, 2008, 33(3): 326-329.
    [10]Huang Youcai. Repeated Median Estimation and It's Application to Coordinate Transformation[J]. Geomatics and Information Science of Wuhan University, 1988, 13(1): 34-47.
  • Cited by

    Periodical cited type(5)

    1. 牟丽爽,冯金扬,吴书清,李春剑,王启宇. 重力关键比对点连续观测不确定度评估. 计量学报. 2022(12): 1639-1644 .
    2. 李瑞东,金大利,樊春燕,王艳,任佳. DZW重力仪观测大地震激发的地球自由振荡. 科技通报. 2017(04): 28-31 .
    3. 江颖,胡小刚. 利用芦山地震自由振荡信号检验中国大陆超导重力仪的高频特性. 武汉大学学报(信息科学版). 2017(05): 583-588 .
    4. 张焱. 超导重力评估水文地质及断层模式. 中国水运(下半月). 2016(07): 173-175+178 .
    5. 张焱. 超导重力评估水文地质及断层模式. 中国水运(下半月). 2016(14): 173-175+178 .

    Other cited types(2)

Catalog

    Article views (1302) PDF downloads (190) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return