WANG Yongbo, WANG Yunjia, SHE Wenwen, HAN Xinzhe. A Linear Features-Constrained, Plücker Coordinates-Based, Closed-Form Registration Approach to Terrestrial LiDAR Point Clouds[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1376-1384. DOI: 10.13203/j.whugis20160408
Citation: WANG Yongbo, WANG Yunjia, SHE Wenwen, HAN Xinzhe. A Linear Features-Constrained, Plücker Coordinates-Based, Closed-Form Registration Approach to Terrestrial LiDAR Point Clouds[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1376-1384. DOI: 10.13203/j.whugis20160408

A Linear Features-Constrained, Plücker Coordinates-Based, Closed-Form Registration Approach to Terrestrial LiDAR Point Clouds

Funds: 

The National Natural Science Foundation of China 41271444

More Information
  • Author Bio:

    WANG Yongbo, PhD, associate professor, specializes in acquisition and processing of LiDAR point clouds, geography ana-lysis and visual modeling. E-mail:ybwang@cumt.edu.cn

  • Received Date: January 03, 2017
  • Published Date: September 04, 2018
  • Considering that the low accuracy of extracted point features may affect the seamless fusion of point clouds from two neighbor stations, and by using traditional iterative-form solutions to implement point clouds registration, the large amount of computer resources, the high dependence on initial values of unknown parameters, and its theoretical instability in solving transformation parameters for large-angle registration can hardly be neglected. To alleviate the above problems, a linear features-based, closed-form solution to registration of pairwise terrestrial LiDAR point clouds is proposed, in which Plücker coordinates is introduced to represent linear features in 3D space. A Plücker coordinate-based object function is first introduced on the assumption of the consistency of each conjugate linear features from the two neighbor stations after registration. Based on the theory of least squares and by extreme value analysis of the error norm, detailed derivations of the model and the main formulas are all given. Experiments show that the proposed algorithm is just the one expected, the linearization of multivariate function is neglected in the implementation, and it runs well without initial estimates of unknown parameters, which assures the stability in solving transformation parameters for large-angle registration problems. Furthermore, by employing linear features as registration primitives, random errors may be greatly decreased by fitting contrast to point features based registration algorithms.
  • [1]
    Horn B K. Closed Form Solution of Absolute Orientation Using Orthonormal Matrices[J]. Journal of Optical Society of America, Series A, 1988, 5(7):1127-1135 doi: 10.1364/JOSAA.5.001127
    [2]
    Arun K S, Huang T S. Least-Squares Fitting of Two 3D Point Sets[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1987, 9(5):698-700 https://www.wenkuxiazai.com/doc/c3f145d9e87101f69f319596-3.html
    [3]
    Horn B K. Closed-Form Solution of Absolute Orientation Using Unit Quaternions[J]. Journal of Optical Society of America, Series A, 1987, 4(4):629-642 doi: 10.1364/JOSAA.4.000629
    [4]
    Shen Y Z, Chen Y, Zheng D H. A Quaternion-Based Geodetic Datum Transformation Algorithm[J]. Journal of Geodesy, 2006, 80:233-239 doi: 10.1007/s00190-006-0054-8
    [5]
    Walker M W, Shao L, Volz R A. Estimating 3D Location Parameters Using Dual Number Quater-nions[J]. CVGIP:Image Understanding, 1991, 54(3):358-367 doi: 10.1016/1049-9660(91)90036-O
    [6]
    Prošková J. Application of Dual Quaternions Algorithm for Geodetic Datum Transformation[J]. Journal of Applied Mathematics, 2011, 4(2):225-236 https://www.sciencedirect.com/science/article/pii/S0924271614001087
    [7]
    Prošková J. Discovery of Dual Quaternions for Geo-desy[J]. Journal for Geometry and Graphics, 2012, 16(2):195-209 http://ieeexplore.ieee.org/document/6882186/
    [8]
    龚辉, 江刚武, 姜挺, 等.基于对偶四元数的绝对定向直接解法[J].测绘科学技术学报, 2009, 26(6):434-438 doi: 10.3969/j.issn.1673-6338.2009.06.012

    Gong Hui, Jiang Gangwu, Jiang Ting, et al. Close-Form Solution of Absolute Orientation Based on Dual Quaternion[J]. Journal of Geomatics Science and Technology, 2009, 26(6):434-438 doi: 10.3969/j.issn.1673-6338.2009.06.012
    [9]
    Wang Yongbo, Wang Yunjia, Wu Kan, et al. A Dual Quaternion-Based, Closed-Form Pairwise Re-gistration Algorithm for Point Clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 94:63-69 doi: 10.1016/j.isprsjprs.2014.04.013
    [10]
    Habib A, Mwafag G, Michel M, et al. Photogrammetric and LiDAR Data Registration Using Linear Features[J]. Photogrammetric Engineering & Remote Sensing, 2005, 71(6):699-707 http://d.old.wanfangdata.com.cn/Conference/WFHYXW328667
    [11]
    Daniilidis K. Hand-Eye Calibration Using Dual Quaternions[J]. The International Journal of Robotics Research, 1999, 18(3):286-298 doi: 10.1177/02783649922066213
    [12]
    王永波, 杨化超, 刘燕华, 等.线状特征约束下基于四元数描述的LiDAR点云配准方法[J].武汉大学学报·信息科学版, 2013, 38(9):1057-1062 http://ch.whu.edu.cn/CN/abstract/abstract2751.shtml

    Wang Yongbo, Yang Huachao, Liu Yanhua, et al. Linear-Feature-Constrained Registration of LiDAR Point Cloud via Quaternion[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9):1057-1062 http://ch.whu.edu.cn/CN/abstract/abstract2751.shtml
    [13]
    Renaudin E, Habib A, Kersting A. Featured-Based Registration of Terrestrial Laser Scans with Minimum Overlap Using Photogrammetric Data[J]. ETRI Journal, 2011, 33(4):517-527 doi: 10.4218/etrij.11.1610.0006
    [14]
    He F, Habib A. A Closed-Form Solution for Coarse Registration of Point Clouds Using Linear Features[J]. Journal of Survey and Engineering, 2016, 142(3):04016006, DOI:10.1061/(ASCE) SU.1943-5428. 0000174
    [15]
    盛庆红, 陈姝文, 柳建锋, 等.基于Plücker直线的LiDAR点云配准法[J].测绘学报, 2016, 45(1):58-64 http://d.old.wanfangdata.com.cn/Periodical/chxb201601009

    Sheng Qinghong, Chen Shuwen, Liu Jianfeng, et al. LiDAR Point Cloud Registration Based on Plücker Line[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1):58-64 http://d.old.wanfangdata.com.cn/Periodical/chxb201601009
    [16]
    Khoshelham K. Closed-Form Solutions for Estimating a Rigid Motion from Plane Correspondences Extracted from Point Clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114:78-91 doi: 10.1016/j.isprsjprs.2016.01.010
    [17]
    郑德华, 岳东杰, 岳建平.基于几何特征约束的建筑物点云配准算法[J].测绘学报, 2008, 37(4):464-468 doi: 10.3321/j.issn:1001-1595.2008.04.011

    Zheng Dehua, Yue Dongjie, Yue Jianping. Geome-tric Feature Constraint Based Algorithm for Buil-ding Scanning Point Cloud Registration[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(4):464-468 doi: 10.3321/j.issn:1001-1595.2008.04.011
    [18]
    Pottmann H, Hofer M, Odehnal B, et al. Line Geometry for 3D Shape Understanding and Reconstruction[C]. European Conference on Computer Vision, Prague, Czech Republic, 2004
  • Related Articles

    [1]SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030
    [2]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [3]ZHAO Qile, TAO Jun, GUO Jing, CHEN Guo, XU Xiaolong, ZHANG Qiang, ZHANG Gaojian, XU Shengyi, LI Junqiang. Wide-Area Instantaneous cm-Level Precise Point Positioning: Method and Service System[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1058-1069. DOI: 10.13203/j.whugis20230202
    [4]YAN Zhongbao, ZHANG Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. DOI: 10.13203/j.whugis20220025
    [5]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [6]ZHANG Xiaohong, LIU Gen, GUO Fei, LI Xin. Model Comparison and Performance Analysis of Triple-frequency BDS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2124-2130. DOI: 10.13203/j.whugis20180078
    [7]ZHANG Xiaohong, CAI Shixiang, LI Xingxing, GUO Fei. Accuracy Analysis of Time and Frequency Transfer Based on Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 274-278.
    [8]ZHANG Xiaohong, GUO Fei, LI Xingxing, LIN Xiaojing. Study on Precise Point Positioning Based on Combined GPS and GLONASS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 9-12.
    [9]FU Jianhong, YUAN Xiuxiao. Influence of GPS Base Station on Accuracy of Positioning by Airborne Position and Orientation System[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 398-401.
    [10]Huang Shengxiang, Zhang Yan. Estimation of Accuracy Indicators for GPS Relative Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(1): 47-50.
  • Cited by

    Periodical cited type(22)

    1. 肖斌宸,叶飞,叶险峰,曾翔强. 电离层和地形复杂区域北斗/GNSS实时PPP性能及大气分析. 数据与计算发展前沿(中英文). 2025(01): 108-118 .
    2. 侯诚,史俊波,苟劲松,郭际明,邹进贵. 多路径误差对BDS-3变形监测精度的影响. 大地测量与地球动力学. 2024(02): 128-133 .
    3. 邓陈喜,姜维,王剑,蔡伯根. 基于北斗3号PPP-B2b信号的实时精密单点定位方法研究. 铁道学报. 2024(02): 63-73 .
    4. 于合理,孙晓东,贾赞杰,武智佳,代桃高. 限制环境下的GNSS精密授时方法研究综述. 海洋测绘. 2024(02): 46-50 .
    5. 许扬胤,任夏,明锋. 北斗三号PPP-B2b信号精密单点定位服务可用性分析. 全球定位系统. 2024(03): 10-19 .
    6. 肖恭伟,卞逸驰,何在民,广伟,尹翔飞,张润芝. 北斗三号PPP-B2b差分码偏差对UPPP解算的影响. 西安邮电大学学报. 2024(02): 1-10 .
    7. 宋伟伟,宋啟晟,何倩倩,龚晓鹏,辜声峰. 高精度电离层产品增强PPP-B2b定位性能分析. 武汉大学学报(信息科学版). 2024(09): 1517-1526 .
    8. 索世恒,韩昆,张永峰. 伽利略高精度服务产品与其全球定位性能评估. 地理空间信息. 2024(11): 100-104+121 .
    9. 孙爽,王敏,刘长建,孟欣,季锐. PPP-B2b服务钟差常数偏差特性及对定位的影响分析. 测绘科学. 2023(01): 8-15 .
    10. 郭文飞,朱萌萌,辜声峰,左鸿铭,陈金鑫. GNSS精密时频接收机时钟调控模型与参数设计方法. 武汉大学学报(信息科学版). 2023(07): 1126-1133 .
    11. 唐守普,吴文坛,夏振营,史进志,赵婉清,莫雁寒. 北斗三号PPP-B2b独立定位分析与应用. 河北省科学院学报. 2023(03): 61-69 .
    12. 赵淑洁,赵当丽,黄媛媛,纪元法. 基于PPP-B2b改正产品的北斗实时精密星历精度分析. 时间频率学报. 2023(02): 141-149 .
    13. 张润芝,何在民,马红皎,武建锋,广伟,肖恭伟. 北斗三号PPP-B2b信号跟踪环路的极点分布法设计. 时间频率学报. 2023(02): 161-169 .
    14. 姚夏,李志敏,吴如楠,毛飞宇,龚晓鹏. 北斗三号PPP-B2b信号时间同步性能分析. 导航定位学报. 2023(04): 84-89 .
    15. 史俊波,董新莹,欧阳晨皓,彭文杰,姚宜斌. 基于北斗三号PPP服务的快速静态和低动态定位性能分析. 大地测量与地球动力学. 2023(10): 997-1002 .
    16. 韩晓红,孙保琪,张喆,周红源,杨海彦,赵当丽,杨旭海. 基于北斗三号PPP-B2b轨道的实时精密共视时间传递. 导航定位与授时. 2023(04): 103-111 .
    17. 肖鹏,孙付平,张伦东,肖凯,商向永. 北斗三号PPP-B2b服务实时动态定位性能分析. 导航定位学报. 2023(05): 21-28 .
    18. 刘杨,曾安敏,郑翠娥,江鹏,刘焱雄. 广播式远程精密水下导航定位技术. 哈尔滨工程大学学报. 2023(11): 1987-1995 .
    19. 王林伟,周长江,余海锋,岳彩亚. 全球精密单点定位性能评估. 导航定位与授时. 2023(06): 86-92 .
    20. 赵泉涌,潘树国,缪巍巍,沈超,高旺,赵庆. PPP-B2b常数偏差实时改正后的多频单历元定位. 测绘科学. 2023(11): 61-68 .
    21. 彭松,刘建坤,张云龙,常丹,孙兆辉. 基于北斗三号远程监测系统的公路岩质边坡开挖变形分析. 科学技术与工程. 2022(33): 14898-14906 .
    22. 余德荧,金际航,刘一,边少锋. 基于北斗三号PPP-B2b信号的海上精密定位试验分析. 海洋测绘. 2022(06): 51-55+64 .

    Other cited types(9)

Catalog

    Article views (1454) PDF downloads (294) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return