LIU Jinghong, YAO Yibin, SANG Jizhang, LEI Xiangxu. Effect of the Changes of Tropopause on Weighted Mean Temperature[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1430-1435. DOI: 10.13203/j.whugis20180075
Citation: LIU Jinghong, YAO Yibin, SANG Jizhang, LEI Xiangxu. Effect of the Changes of Tropopause on Weighted Mean Temperature[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1430-1435. DOI: 10.13203/j.whugis20180075

Effect of the Changes of Tropopause on Weighted Mean Temperature

Funds: 

The National Natural Science Foundation of China 41574028

The National Natural Science Foundation of China 41721003

More Information
  • Received Date: August 17, 2018
  • Published Date: October 04, 2019
  • The variation of tropopause serves as an indicator of global scale meteorological change. Although a lot of research on tropopause has been done, it has rarely been discussed in GPS meteorology. In fact, the tropopause shows strong correlation with weighted mean temperature and precipitable water vapor (PWV). The correlations suggest that the tropopause has been the main influencing factor, except surface temperature. Yao has proposed a formula that links the weighted mean temperature and tropopause. The formula is rearranged and the approximated quadratic functional relationship between tropopause and weighted mean temperature is derived. The following works focus on discussing the abscissa of extremum and the coefficient sign of quadratic function, using radiosonde data. The sign from one of the coefficients of quadratic function is plotted in China region. Combing the map of positive-negative signs and vertex height of abscissa of extremum with the seasonal changes of tropopause, it's easy to predict the influence of tropopause on weighted mean temperature. After discussing the relationship between tropopause and weighted mean temperature, its influence on PWV is easy to describe. The curve of PWV change will be sharp or mild when tropopause enhances or reduces the influence of surface temperature on weighted mean temperature.
  • [1]
    Holton J R, Haynes P H, McIntyre M E, et al. Stratosphere-Troposphere Exchange[J]. Rev Geophys, 1995, 33:403-439 doi: 10.1029/95RG02097
    [2]
    Nagurny A P. Climatic Characteristics of the Tropopause over the Arctic Basin[J]. Annales Geophysicae, 1998, 16:110-115 doi: 10.1007/s00585-997-0110-6
    [3]
    Seidel D J, Ross R J, Angell J K. Climatological Characteristics of the Tropical Tropopause as Revealed by Radiosondes[J]. Journal of Geophysical Research, 2001, 106(D8):7857-7878 doi: 10.1029/2000JD900837
    [4]
    Wickert J. The Radio Occultation Experiment Aboard CHAMP:Operational Data Analysis and Validation of Atmospheric Profiles[J]. Journal of the Meteorological Society of Japan, 2004, 82(1B):381-395 doi: 10.2151/jmsj.2004.381
    [5]
    Hajj G A, Ao C O, Iijima B A, et al. CHAMP and SAC-C Atmospheric Occultation Results and Intercomparisons[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2004, 109(D06): 109
    [6]
    Narayana R D, Ratnam M V, Murthy B V K, et al. Identification of Tropopause Using Bending Angle Profile from GPS Radio Occultation (RO):A Radio Tropopause[J]. Geophysical Research Letters, 2007, 34:L15809 doi: 10.1029-2007GL029709/
    [7]
    Lewis H W. A Robust Method for Tropopause Altitude Identification Using GPS Radio Occultation Data[J]. Geophysical Research Letters, 2009, 36(12):973-83 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2009GL039231
    [8]
    于胜杰, 柳林涛.水汽加权平均温度回归公式的验证与分析[J].武汉大学学报·信息科学版, 2009, 34(6):741-744 http://ch.whu.edu.cn/CN/abstract/abstract1358.shtml

    Yu Shengjie, Liu Lintao. Validation and Analysis of the Water-Vapor-Weighted Mean Temperature from Tm-Ts Relationship[J]. Geomatics and Information Science of Wuhan University, 2009, 34(6):741-744 http://ch.whu.edu.cn/CN/abstract/abstract1358.shtml
    [9]
    Wang J, Zhang L, Dai A. Global Estimates of Water-Vapor-Weighted Mean Temperature of the Atmosphere for GPS Applications[J]. Journal of Geophysical Research Atmospheres, 2005, 110(D21):2927-2934
    [10]
    姚宜斌, 刘劲宏, 张豹, 等.地表温度与加权平均温度的非线性关系[J].武汉大学学报·信息科学版, 2015, 39(5):112-116 http://ch.whu.edu.cn/CN/abstract/abstract3174.shtml

    Yao Yibin, Liu Jinghong, Zhang Bao, et al. Nonlinear Relationships Between the Surface Temperature and the Weighted Mean Temperature[J]. Geomatics and Information Science of Wuhan University, 2015, 39(5):112-116 http://ch.whu.edu.cn/CN/abstract/abstract3174.shtml
    [11]
    Liu J H, Yao Y B, Sang J H. A New Weighted Mean Temperature Model in China[J]. Advances in Space Research, 2017, 61(10):1016 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aa322e5571f2150ad13ff1d7c9a0b454
    [12]
    Añel J A, Antuña J C, Torre L D L, et al. Global Statistics of Multiple Tropopauses from the IGRA Database[J]. Geophysical Research Letters, 2007, 34(6):226-230 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2006GL029224
  • Related Articles

    [1]LI Da, QU Wei, ZHANG Qin, LI Jiuyuan, LING Qing. Landslide Displacement Prediction Model Integrating Multi-layer Perceptron and Optimized Support Vector Regression[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1380-1388. DOI: 10.13203/j.whugis20210703
    [2]ZHANG Yixiao, ZHAO Zhongguo, ZHENG Jianghua. Estimation of Reference Crop Evapotranspiration Under Different Combination of Meteorological Elements Using Multivariate Adaptive Regression Splines[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 789-798. DOI: 10.13203/j.whugis20190337
    [3]XU Shan, ZOU Bin, WANG Min, LIU Ning. Performance Comparison of Artificial Neural Network and Kriging in Spatial Estimation of PM2.5 Concentration[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1642-1650. DOI: 10.13203/j.whugis20180482
    [4]XU Yanfang, LIU Wenyao, WU Bing, HUANG Min. Application of Neural Network in Color Conversion[J]. Geomatics and Information Science of Wuhan University, 2006, 31(9): 799-801.
    [5]YU Liang, BIAN Fuling. Application of Rough Set-Based Neural Network in Forest Fire Alarm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(8): 720-723.
    [6]HU Yaogai, LI Wei, HU Jiming. An Artificial Neural Network with Improved Activation Function and Its Application[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 916-919.
    [7]SHAO Lixia, HE Zongyi, AI Zixing, SONG Xiaodong. Automatic Generalization of River Network Based on BP Neural Network Techniques[J]. Geomatics and Information Science of Wuhan University, 2004, 29(6): 555-557.
    [8]XIAO Ping, LI Deren. Land Use/Cover Change Detection Based on Artificial Neural Network[J]. Geomatics and Information Science of Wuhan University, 2002, 27(6): 586-590.
    [9]Shen Weiming, Zhang Zuxun, Zhang Jianqing. Image Matching by Neural Network Based Relaxation[J]. Geomatics and Information Science of Wuhan University, 1996, 21(3): 247-251.
    [10]Huang Wenqian. Recognition of Point-shaped Map Symbols with a New Neural Network Model[J]. Geomatics and Information Science of Wuhan University, 1996, 21(1): 46-49.
  • Cited by

    Periodical cited type(1)

    1. 任亚飞,郑玉丽,姚雷博. 基于图像识别的淬火过程中钢球计数研究. 拖拉机与农用运输车. 2021(06): 52-54+58 .

    Other cited types(3)

Catalog

    Article views (1384) PDF downloads (212) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return