LI Da, QU Wei, ZHANG Qin, LI Jiuyuan, LING Qing. Landslide Displacement Prediction Model Integrating Multi-layer Perceptron and Optimized Support Vector Regression[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1380-1388. DOI: 10.13203/j.whugis20210703
Citation: LI Da, QU Wei, ZHANG Qin, LI Jiuyuan, LING Qing. Landslide Displacement Prediction Model Integrating Multi-layer Perceptron and Optimized Support Vector Regression[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8): 1380-1388. DOI: 10.13203/j.whugis20210703

Landslide Displacement Prediction Model Integrating Multi-layer Perceptron and Optimized Support Vector Regression

More Information
  • Received Date: December 13, 2021
  • Available Online: October 19, 2022
  • Published Date: August 04, 2023
  •   Objectives  Landslide disaster has become the first geological disaster in China. In the process of landslide movement instability, its surface will show certain deformation information, and this deformation information is an important external manifestation of landslide internal change instability, which can be used as an important reference information for landslide prediction and early warning. Therefore, the high-precision prediction of landslide displacement has important reference value for landslide disaster prediction and early warning.
      Methods  Considering the advantages of the intelligent optimization and machine learning algorithms, a landslide displacement combined prediction model is established. First, the multilayer perceptron (MLP) method is used to preliminary prediction of landslide displacement. Then, the artificial fish swarm algorithm (AFSA) improved based on differential evolution (DE) algorithm is further constructed, and combined with the support vector regression (SVR) to established an optimal combination SVR (OPSVR) to modify the prediction results calculated by MLP.
      Results  The two typical landslides monitored by BeiDou show that: (1) For HF08, the single SVR prediction model had a root mean square error (RMSE) of 23.8 mm between the prediction and the true values on the test set, and RMSE for MLP, genetic algorithm-SVR (GA-SVR), particle swarm optimization-SVR (PSO-SVR) and OPSVR prediction models are 19.9 mm, 10.9 mm, 8.3 mm and 8.3 mm, respectively. Compared with the SVR, MLP, GA-SVR, PSO-SVR and OPSVR prediction models, the prediction accuracy of MLP-OPSVR prediction model is improved by 6.2 times, 5.0 times, 2.3 times, 1.5 times and 1.5 times, respectively. The RMSE of MLP-OPSVR prediction model is only 3.3 mm. (2) For HF05, the single SVR prediction model had a RMSE of 26.5 mm between the prediction and the true values on the test set, and RMSE for MLP, GA-SVR, PSO-SVR and OPSVR prediction models are 32.8 mm, 15.4 mm, 15.6 mm and 15.5 mm, respectively. However, the RMSE of MLP-OPSVR prediction model is only 7.0 mm. Compared with the SVR, MLP, GA-SVR, PSO-SVR and OPSVR prediction models, the prediction accuracy of MLP-OPSVR prediction model is improved by 2.8 times, 3.7 times, 1.2 times, 1.2 times and 1.2 times, respectively.
      Conclusions  The DE algorithm can effectively overcome the outstanding problem that most artificial fish individuals are in random motion in the later stage of AFSA operation and cannot search for the global optimal solution, and improves its optimization performance. Further combined with SVR, it can more reasonably determine the super parameters of SVR and improve its prediction accuracy. Compared with a single MLP and SVR prediction model, as well as combined prediction models of conventional intelligent optimization algorithm (genetic algorithm, particle swarm optimization algorithm) and improved AFSA with SVR, the MLP-OPSVR combined prediction model has higher precision prediction results, and has a good value for popularization and application in landslide warning research.
  • [1]
    薄万举, 胡新康, 董运洪, 等. 用GPS位移场进行中小区域变形分析方法探讨[J]. 大地测量与地球动力学, 2010, 30(3): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201003009.htm

    Bo Wanju, Hu Xinkang, Dong Yunhong, et al. On Methods of Crust Deformation Analysis of Medium-Small Area by Using Displacement Velocity Data of GPS Stations[J]. Journal of Geodesy and Geodynamics, 2010, 30(3): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201003009.htm
    [2]
    吴益平, 滕伟福, 李亚伟. 灰色-神经网络模型在滑坡变形预测中的应用[J]. 岩石力学与工程学报, 2007, 26(3): 632-636. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200703027.htm

    Wu Yiping, Teng Weifu, Li Yawei. Application of Grey-Neural Network Model to Landslide Deformation Prediction[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 632-636. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200703027.htm
    [3]
    邓冬梅, 梁烨, 王亮清, 等. 基于集合经验模态分解与支持向量机回归的位移预测方法: 以三峡库区滑坡为例[J]. 岩土力学, 2017, 38(12): 3660-3669. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712035.htm

    Deng Dongmei, Liang Ye, Wang Liangqing, et al. Displacement Prediction Method Based on Ensemble Empirical Mode Decomposition and Support Vector Machine Regression: A Case of Landslides in Three Gorges Reservoir Area[J]. Rock and Soil Mechanics, 2017, 38(12): 3660-3669. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712035.htm
    [4]
    姜万冬, 席江波, 李振洪, 等. 模拟困难样本的Mask R-CNN滑坡分割识别[J]. 武汉大学学报(信息科学版), 2021, DOI: 10.13203/j.whugis20200692

    Jiang Wandong, Xi Jiangbo, Li Zhenhong, et al. Landslide Detection and Segmentation Using Mask R-CNN with Simulated Hard Samples[J]. Geomatics and Information Science of Wuhan University, 2021, DOI: 10.13203/j.whugis20200692
    [5]
    王利, 岳聪, 舒宝, 等. 基于混沌时间序列的黄土滑坡变形预测方法及应用[J]. 地球科学与环境学报, 2021, 43(5): 917-925. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202105011.htm

    Wang Li, Yue Cong, Shu Bao, et al. Chaotic Time Series Based Surface Displacement Prediction Method and Application to Loess Landslides[J]. Journal of Earth Sciences and Environment, 2021, 43(5): 917-925. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202105011.htm
    [6]
    Wu L, Li S, Huang R. A New Grey Prediction Model and Its Application to Predicting Landslide Displacement[J]. Applied Soft Computing, 2020, 95: 106543. doi: 10.1016/j.asoc.2020.106543
    [7]
    Zhou C, Yin K, Cao Y, et al. Application of Time Series Analysis and PSO-SVM Model in Predicting the Bazimen Landslide in the Three Gorges Reservoir, China[J]. Engineering Geology, 2016, 204: 108-120. doi: 10.1016/j.enggeo.2016.02.009
    [8]
    Lian C, Zeng Z G, Yao W, et al. Ensemble of Extreme Learning Machine for Landslide Displacement Prediction Based on Time Series Analysis[J]. Neural Computing and Applications, 2014, 24(1): 99-107. doi: 10.1007/s00521-013-1446-3
    [9]
    王利, 许豪, 舒宝, 等. 利用互信息和IPSO-LSTM进行滑坡监测多源数据融合[J]. 武汉大学学报(信息科学版), 2021, 46(10): 1478-1488. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202110007.htm

    Wang Li, Xu Hao, Shu Bao, et al. A Multi-source Heterogeneous Data Fusion Method for Landslide Monitoring with Mutual Information and IPSO-LSTM Neural Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1478-1488. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202110007.htm
    [10]
    Li X Z, Kong J M. Application of GA-SVM Method with Parameter Optimization for Landslide Development Prediction[J]. Natural Hazards and Earth System Sciences, 2014, 14(3): 525-533.
    [11]
    Zhou C, Yin K L, Cao Y, et al. A Novel Method for Landslide Displacement Prediction by Integrating Advanced Computational Intelligence Algorithms[J]. Scientific Reports, 2018, 8: 7287.
    [12]
    张俊, 殷坤龙, 王佳佳, 等. 基于时间序列与PSO-SVR耦合模型的白水河滑坡位移预测研究[J]. 岩石力学与工程学报, 2015, 34(2): 382-391. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502019.htm

    Zhang Jun, Yin Kunlong, Wang Jiajia, et al. Displacement Prediction of Baishuihe Landslide Based on Time Series and PSO-SVR Model[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 382-391. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502019.htm
    [13]
    徐先峰, 蔡路路, 张丽. 融合MLP和DBN的光伏发电预测算法[J]. 计算机工程与应用, 2021, 57(3): 266-272. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202103036.htm

    Xu Xianfeng, Cai Lulu, Zhang Li. Photovoltaic Power Generation Prediction Algorithm Based on MLP and DBN[J]. Computer Engineering and Applications, 2021, 57(3): 266-272. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202103036.htm
    [14]
    伊恩·古德费洛. 深度学习[M]. 北京: 人民邮电出版社, 2017.

    Goodfellow I. Deep Learning[M]. Beijing: Posts & Telecom Press, 2017.
    [15]
    Vapnik V. 统计学习理论的本质[M]. 北京: 清华大学出版社, 2000.

    Vapnik V. The Nature of Statistical Learning Theory[M]. Beijing: Tsinghua University Press, 2000.
    [16]
    李晓磊. 一种新型的智能优化方法-人工鱼群算法[D]. 杭州: 浙江大学, 2003.

    Li Xiaolei. A New Intelligent Optimization Method-Artificial Fish Swarm Algorithm[D]. Hangzhou: Zhejiang University, 2003.
    [17]
    丁青锋, 尹晓宇. 差分进化算法综述[J]. 智能系统学报, 2017, 12(4): 431-442. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT201704001.htm

    Ding Qingfeng, Yin Xiaoyu. Research Survey of Differential Evolution Algorithms[J]. CAAI Transactions on Intelligent Systems, 2017, 12(4): 431-442. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT201704001.htm
    [18]
    白正伟, 张勤, 黄观文, 等. "轻终端+行业云"的实时北斗滑坡监测技术[J]. 测绘学报, 2019, 48(11): 1424-1429. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201911009.htm

    Bai Zhengwei, Zhang Qin, Huang Guanwen, et al. Real-Time BeiDou Landslide Monitoring Technology of "Light Terminal Plus Industry Cloud"[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1424-1429. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201911009.htm
  • Related Articles

    [1]Yang Shuwen, Li Yikun, Liu Tao, Yao Huaqin. A New Automatic Water Body Feature Extraction MethodBased on SPOTS Images[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3): 308-314.
    [2]XU Chuang, LUO Zhicai, LIN Xu, ZHOU Boyang. Automatic Preprocessing of Tidal Gravity Observation Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 157-161.
    [3]XU Aiping, SHENG Wenshun, SHU Hong. Spatiotemporal Interpolation and Cross Validation Based on Product-Sum Model[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 766-769.
    [4]WANG Zhu, LI Shujun, ZHANG Lihua, LI Ning. A Method for Automatic Routing Based on Route Binary Tree[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 407-410.
    [5]Lin Zongjian, Zhang Jixian. An Algorithm for Automatic Location and Orientation in Pattern Designed Environment[J]. Geomatics and Information Science of Wuhan University, 1998, 23(4): 351-354,376.
    [6]Deng Dexiang, Li Yulin, Zhong Chengdong. An Advance Probe Method for Automatic Synthesize of Combinational Logic Circuitsc[J]. Geomatics and Information Science of Wuhan University, 1997, 22(2): 160-162.
    [7]Cheng Kongzhe, Zhu Xinyan, Zhang Yinzhou, Su Guangkui. Study on Automatic Chinese-Label Placement[J]. Geomatics and Information Science of Wuhan University, 1997, 22(2): 136-141.
    [8]Wang Qiao, Wu Hehai. The Research on Fractal Method of Automatic Generalization of Map Polygons[J]. Geomatics and Information Science of Wuhan University, 1996, 21(1): 59-63.
    [9]Guo Renzhong, Wh Hehai. A Research on the Automatic Generalization of Urban Settlement on a Topographic Map[J]. Geomatics and Information Science of Wuhan University, 1993, 18(2): 15-22.
    [10]Li Jinxiang, Su Guangkui, Chen Manling. Automatic Monitor System[J]. Geomatics and Information Science of Wuhan University, 1986, 11(3): 46-54.
  • Cited by

    Periodical cited type(3)

    1. 朱广彬,常晓涛,瞿庆亮,周苗. 利用卫星引力梯度确定地球重力场的张量不变方法研究. 武汉大学学报(信息科学版). 2022(03): 334-340 .
    2. 刘焕玲,文汉江,徐新禹,赵永奇,蔡剑青. GOCE实测数据反演高阶重力场模型的Torus方法. 测绘学报. 2020(08): 965-973 .
    3. 景小阳,裴婧,许航,解文博. 使用Savitzky—Golay滤波器改进的位场ISVD算法. 工程地球物理学报. 2019(04): 486-493 .

    Other cited types(3)

Catalog

    Article views (805) PDF downloads (125) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return