ZHAO Yinghao, ZHOU Letao, FENG Wei, JIANG Zhongshan, LUO Chenxi. Analysis of Time-Varying Characteristic of GPS Receiver Hardware Delay[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1212-1219. DOI: 10.13203/j.whugis20170337
Citation: ZHAO Yinghao, ZHOU Letao, FENG Wei, JIANG Zhongshan, LUO Chenxi. Analysis of Time-Varying Characteristic of GPS Receiver Hardware Delay[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1212-1219. DOI: 10.13203/j.whugis20170337

Analysis of Time-Varying Characteristic of GPS Receiver Hardware Delay

Funds: 

The National Key Research and Development Program of China 2016YFB0501900

the National Natural Science Foundation of China 41104020

the National Natural Science Foundation of China 41374032

More Information
  • Author Bio:

    ZHAO Yinghao, PhD candidate, specializes in GNSS precise positioning algorithm. E-mail:justdoitzyh@163.com

  • Corresponding author:

    ZHOU Letao, PhD, associate professor. E-mail:ltzhou@swjtu.edu.cn

  • Received Date: March 04, 2018
  • Published Date: August 04, 2019
  • In the Global Positioning System (GPS), the receiver hardware-induced code and phase biases are important factors affecting precise timing, precise modeling of ionosphere and un-difference ambiguity resolution. In the estimation and modeling of ionospheric electron content, it is generally assumed that the GPS receiver hardware biases are constant amounts, without considering the possible fluctuations and influencing factors. Therefore, to analyze the time-varying characteristics of receiver hardware biases can help improve the accuracy and reliability of the ionospheric electron content estimation. In this paper, the time-varying characteristics of single-epoch and single-day solved GPS receiver differential code bias (DCB) and differential phase bias (DPB) are analyzed, and the correlation between the variation of receiver hardware delay and the change of ambient temperature is explored experimentally. The results indicate that receiver DCB will mutate after a restart. And after restarting, the receiver DCB and DPB have a changing process, which takes about 25 min, afterwards they keep stabilized. Also, it's worth noting that the receiver DCB and DPB cannot be stable for a long time. The experimental results show that the change of receiver DCB and DPB can reach about 0.8 m and 4 mm in 2-3 h. In addition, the fluctuation of receiver hardware delay has a strong correlation with the change of the vicinity temperature.
  • [1]
    Håkansson M, Jensen A B, Horemuz M, et al. Review of Code and Phase Biases in Multi-GNSS Positioning[J].GPS Solutions, 2017, 21 (3) :849-860 doi: 10.1007/s10291-016-0572-7
    [2]
    Coco D S, Coker C, Dahlke S R, et al. Variability of GPS Satellite Differential Group Delay Biases [J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(6): 931-938 doi: 10.1109/7.104264
    [3]
    Sardon E, Rius A, Zarraoa N. Estimation of the Transmitter and Receiver Differential Biases and the Ionospheric Total Electron Content from Global Positioning System Observations [J]. Radio Science, 1994, 29(3): 577-586 doi: 10.1029/94RS00449
    [4]
    常青, 张东和, 萧佐, 等. GPS系统硬件延迟估计方法及其在TEC计算中的应用[J].地球物理学报, 2001, 44(5): 596-601 doi: 10.3321/j.issn:0001-5733.2001.05.003

    Chang Qing, Zhang Donghe, Xiao Zuo, et al. A Method for Estimating GPS Instrumental Biases and Its Application in TEC Calculation [J]. Chinese Journal of Geophysics, 2001, 44(5):596-601 doi: 10.3321/j.issn:0001-5733.2001.05.003
    [5]
    Ma G, Maruyama T. Derivation of TEC and Estimation of Instrumental Biases from GEONET in Japan [J]. Annales Geophysicae, 2003, 21(10): 2 083-2 093 doi: 10.5194/angeo-21-2083-2003
    [6]
    Ya'acob N, Abdullah M, Ismail M. Determination of GPS Total Electron Content Using Single Layer Model (SLM) Ionospheric Mapping Function [J]. International Journal of Computer Science and Network Security, 2008, 8(9): 154-160 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000000680047
    [7]
    Brunini C, Azpilicueta F. GPS Slant Total Electron Content Accuracy Using the Single Layer Model Under Different Geomagnetic Regions and Ionospheric Conditions [J]. Journal of Geodesy, 2010, 84(5): 293-304 doi: 10.1007/s00190-010-0367-5
    [8]
    Themens D R, Jayachandran P, Langley R, et al. Determining Receiver Biases in GPS-Derived Total Electron Content in the Auroral Oval and Polar Cap Region Using Ionosonde Measurements [J]. GPS Solutions, 2013, 17(3): 357-369 doi: 10.1007/s10291-012-0284-6
    [9]
    Wang N, Yuan Y, Li Z, et al. Determination of Differential Code Biases with Multi-GNSS Observations [J]. Journal of Geodesy, 2016, 90(3): 209-228 doi: 10.1007/s00190-015-0867-4
    [10]
    Banville S, Santerre R, Cocard M, et al. Satellite and Receiver Phase Bias Calibration for Undifferenced Ambiguity Resolution [C]. The 2008 National Technical Meeting of the Institute of Navigation, San Diego, CA, 2008
    [11]
    Ge M, Gendt G, Rothacher M A, et al. Resolution of GPS Carrier-Phase Ambiguities in Precise Point Positioning (PPP) with Daily Observations [J]. Journal of Geodesy, 2008, 82(7): 389-399 doi: 10.1007/s00190-007-0187-4
    [12]
    Geng J, Teferle F N, Shi C, et al. Ambiguity Resolution in Precise Point Positioning with Hourly Data [J]. GPS Solutions, 2009, 13(4): 263-270 doi: 10.1007/s10291-009-0119-2
    [13]
    Geng J, Shi C, Ge M, et al. Improving the Estimation of Fractional-Cycle Biases for Ambiguity Resolution in Precise Point Positioning [J]. Journal of Geodesy, 2012, 86(8): 579-589 doi: 10.1007/s00190-011-0537-0
    [14]
    Li X, Zhang X. Improving the Estimation of Uncalibrated Fractional Phase Offsets for PPP Ambiguity Resolution [J]. Journal of Navigation, 2012, 65(3): 513-529 doi: 10.1017/S0373463312000112
    [15]
    张小红, 李盼, 李星星, 等.宽巷载波相位模糊度小数偏差估计及其时变特性分析[J].测绘学报, 2013, 42(6): 798-803 http://www.cnki.com.cn/Article/CJFDTotal-CHXB201306003.htm

    Zhang Xiaohong, Li Pan, Li Xingxing, et al. An Analysis of Time-Varying Property of Widelane Carrier Phase Ambiguity Fractional Bias [J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(6): 798-803 http://www.cnki.com.cn/Article/CJFDTotal-CHXB201306003.htm
    [16]
    Li Z, Yuan Y, Fan L, et al. Determination of the Differential Code Bias for Current BDS Satellites [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 3 968-3 979 doi: 10.1109/TGRS.2013.2278545
    [17]
    Wilson B D, Yinger C H, Feess W A, et al. New and Improved: The Broadcast Interfrequency Biases [J]. GPS World, 1999, 10(9): 56-66
    [18]
    Coster A, Williams J, Weatherwax A, et al. Accuracy of GPS Total Electron Content: GPS Receiver Bias Temperature Dependence [J]. Radio Science, 2013, 48(2): 190-196 doi: 10.1002/rds.20011
    [19]
    Zhang B, Teunissen P J. Characterization of Multi-GNSS Between-Receiver Differential Code Biases Using Zero and Short Baselines [J]. Science Bulletin, 2015, 60(21): 1 840-1 849 doi: 10.1007/S11434-015-0911-Z
    [20]
    Leick A, Rapoport L, Tatarnikov D. GPS Satellite Surveying [M]. New Jersey: John Wiley and Sons, 2015
    [21]
    Wang M, Gao Y. An Investigation on GPS Receiver Initial Phase Bias and Its Determination [C]. The 2007 National Technical Meeting of the Institute of Navigation, San Diego, CA, 2007
    [22]
    潘林, 蔡昌盛, 李施佳.北斗接收机初始相位偏差特性分析[J].武汉大学学报·信息科学版, 2016, 41(3): 336-341 http://ch.whu.edu.cn/CN/abstract/abstract4572.shtml

    Pan Lin, Cai Changsheng, Li Shijia. The Characteristics of BeiDou Receiver Initial Phase Bias [J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 336-341 http://ch.whu.edu.cn/CN/abstract/abstract4572.shtml
    [23]
    袁运斌, 张宝成, 李敏.多频多模接收机差分码偏差的精密估计与特性分析[J].武汉大学学报·信息科学版, 2018, 43(12): 2 106-2 111 http://ch.whu.edu.cn/CN/abstract/abstract6297.shtml

    Yuan Yunbin, Zhang Baocheng, Li Min. Precise Estimation and Characteristic Analysis of Multi-GNSS Receiver Differential Code Biases[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2 106-2 111 http://ch.whu.edu.cn/CN/abstract/abstract6297.shtml

Catalog

    Article views (1665) PDF downloads (227) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return