WANG Aihui, YANG Yingbao, PAN Xin, HU Jiejunde. Land Surface Temperature Reconstruction Model of FY-4A Cloudy Pixels Considering Spatial and Temporal Characteristics[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 852-862. DOI: 10.13203/j.whugis20200039
Citation: WANG Aihui, YANG Yingbao, PAN Xin, HU Jiejunde. Land Surface Temperature Reconstruction Model of FY-4A Cloudy Pixels Considering Spatial and Temporal Characteristics[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 852-862. DOI: 10.13203/j.whugis20200039

Land Surface Temperature Reconstruction Model of FY-4A Cloudy Pixels Considering Spatial and Temporal Characteristics

Funds: 

The National Natural Science Foundation of China 42071346

The National Natural Science Foundation of China 41701487

More Information
  • Author Bio:

    WANG Aihui, postgraduate, specializes in the application of thermal infrared remote sensing.E-mail: 15195892293@163.com

  • Corresponding author:

    YANG Yingbao, PhD, professor.E-mail: yyb@hhu.edu.cn

  • Received Date: May 30, 2020
  • Published Date: June 04, 2021
  •   Objectives  Resorting to remote sensing technology, land surface temperature (LST) data of high spatial and temporal resolution can be conveniently acquired. However, due to the influence of bad weather conditions such as cloud and rain, there are many null values in those LST data, being an obstacle to the further application of LST data.
      Methods  A novel null reconstruction model of LST based on spatial and temporal characteristics is proposed.Firstly, the reconstruction of partial null values of LST data is realized by weighting the effective records of the same period within contiguous days in the time domain, followed the intrinsic assumption that the changes of LST data in adjacent time periods are similar. Secondly, the reconstruction of other null valued pixels are reconstructed in the spatial domain, based on the assumption that adjacent similar pixels have similar LST. The similar pixels are searched by the normalized vegetation index (NDVI). In addition, due to the influence of extreme weather conditions, the above two steps are repeated several times until all null pixels are entirely reconstructed. Finally, Savitzky-Golay (S-G) filter is employed to remove the noise of the reconstructed LST data.
      Results  Compared to the in-situ data, the root mean squared errors (RMSE) of the LST data of all the FY-4A before and after reconstruction are 4.805 K and 6.969 K, respectively. Their determination coefficients (R2) are 0.842 and 0.605, respectively. Under clear sky conditions, RMSEs of FY-4A LST data before and after reconstruction are 3.392 K and 5.016 K, respectively, and their R2 are 0.948 and 0.874, respectively. Under cloudy weather conditions, RMSE and R2 of reconstructed LST data are 5.053 K and 0.726, respectively. Under rainy weather conditions, RMSE and R2 of reconstructed LST data are 7.872 K and 0.313, respectively. Compared with the original LST data of FY-4A, the RMSE of the reconstructed data ranges 0.483-0.507 K and the R2 ranges 0.846-0.976 for the null value regions of different sizes in spatial domain. RMSE ranges 0.405-1.915 K and R2 ranges 0.952-0.989 for invalid LST time series of different sizes in time domain.
      Conclusions  The proposed null reconstruction model of LST can accomplish effective reconstruction not only for clear weather, but also for cloudy weather of long time series. Excluding the error of FY-4A LST data, RMSE of reconstruction results reaches 2.171 K. When the number of LST valid pixels is very small, the invalid LST can also be effectively reconstructed by the proposed model, which is tough for the diurnal temperature cycle (DTC) model.
  • [1]
    Li Z L, Tang B H, Wu H, et al. Satellite- Derived Land Surface Temperature: Current Status and Perspectives[J]. Remote Sensing of Environment, 2013, 131: 14-37 doi: 10.1016/j.rse.2012.12.008
    [2]
    向大享, 刘良明, 韩涛. FY-3A MERSI数据干旱监测能力评价[J]. 武汉大学学报·信息科学版, 2010, 35(3): 334-338 http://ch.whu.edu.cn/article/id/888

    Xiang Daxiang, Liu Liangming, Han Tao. Estimation of Drought Monitoring Ability of FY-3A MERSI Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 334-338 http://ch.whu.edu.cn/article/id/888
    [3]
    Ke L, Ding X, Song C. Reconstruction of Time-Series MODIS LST in Central Qinghai-Tibet Plateau Using Geostatistical Approach[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1 602-1 606 doi: 10.1109/LGRS.2013.2263553
    [4]
    颜金彪, 段晓旗, 郑文武, 等. 顾及空间异质性的自适应IDW插值算法[J]. 武汉大学学报·信息科学版, 2020, 45(1): 97-104 doi: 10.13203/j.whugis20180213

    Yan Jinbiao, Duan Xiaoqi, Zheng Wenwu, et al. Geomatics and Information Science of Wuhan University[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 97-104 doi: 10.13203/j.whugis20180213
    [5]
    周义, 覃志豪, 包刚. GIDS空间插值法估算云下地表温度[J]. 遥感学报, 2012, 16(3): 492-504 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201203006.htm

    Zhou Yi, Qin Zhihao, Bao Gang. Land Surface Temperature Estimation Under Cloud Cover with GIDS[J]. Journal of Remote Sensing, 2012, 16(3): 492-504 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201203006.htm
    [6]
    Göttsche F M, Olesen F S. Modelling the Effect of Optical Thickness on Diurnal Cycles of Land Surface Temperature[J]. Remote Sensing of Environment, 2009, 113(11): 2 306-2 316 doi: 10.1016/j.rse.2009.06.006
    [7]
    Duan S B, Li Z L, Wang N, et al. Evaluation of Six Land-Surface Diurnal Temperature Cycle Models Using Clear-Sky in Situ and Satellite Data[J]. Remote Sensing of Environment, 2012, 124: 15-25 doi: 10.1016/j.rse.2012.04.016
    [8]
    刘紫涵, 吴鹏海, 吴艳兰, 等. 风云静止卫星地表温度产品空值数据稳健修复[J]. 遥感学报, 2017, 21(1): 40-51 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201701004.htm

    Liu Zihan, Wu Penghai, Wu Yanlan, et al. Robust Reconstruction of Missing Data in Feng Yun Geostationary Satellite Land Surface Temperature Products[J]. Journal of Remote Sensing, 2017, 21(1): 40-51 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201701004.htm
    [9]
    薛兴盛, 吴艳兰. 面向风云静止卫星地表温度产品的缺失数据修复方法对比[J]. 安徽农业大学学报, 2017, 44(2): 308-315 https://www.cnki.com.cn/Article/CJFDTOTAL-ANHU201702022.htm

    Xue Xingsheng, Wu Yanlan. A Comparison of Missing Data Reconstruction Methods for Feng Yun Geostationary Satellite Land Surface Temperature Products[J]. Journal of Anhui Agricultural University, 2017, 44(2): 308-315 https://www.cnki.com.cn/Article/CJFDTOTAL-ANHU201702022.htm
    [10]
    李国亮. 2000—2012年黑河流域上游植被覆盖变化遥感监测与分析[D]. 兰州: 西北师范大学, 2015

    Li Guoliang. Remote Sensing Monitoring and Analysis of Vegetation Cover Change in the Heihe River Basin from 2000—2012[D]. Lanzhou: Northwest Normal University, 2015
    [11]
    张志清, 董瑶海, 丁雷, 等. 我国首颗第二代静止气象卫星风云-4升空[J]. 国际太空, 2016, 12: 6-12 https://www.cnki.com.cn/Article/CJFDTOTAL-GJTK201612003.htm

    Zhang Zhiqing, Dong Yaohai, Ding Lei, et al. China's First Second-Generation FY-4 Meteorological Satellite Launched[J]. Space International, 2016, 12: 6-12 https://www.cnki.com.cn/Article/CJFDTOTAL-GJTK201612003.htm
    [12]
    谭仲辉, 马烁, 韩丁, 等. 基于随机森林算法的FY-4A云底高度估计方法[J]. 红外与毫米波学报, 2019, 38(3): 381-388 https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201903020.htm

    Tan Zhonghui, Ma Shuo, Han Ding, et al. Estimation of Cloud Base Height for FY-4A Satellite Based on Random Forest Algorithm[J]. Journal of Infrared and Milmillimeter Waves, 2019, 38(3): 381-388 https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201903020.htm
    [13]
    Holben B N. Characteristics of Maximum-Value Composite Images from Temporal AVHRR Data[J]. International Journal of Remote Sensing, 1986, 7(11): 1 417-1 434 doi: 10.1080/01431168608948945
    [14]
    Snyder W C, Wan Z, Zhang Y, et al. Thermal Infrared (3-14 μm) Bidirectional Reflectance Measurements of Sands and Soils[J]. Remote Sensing of Environment, 1997, 60(1): 101-109 doi: 10.1016/S0034-4257(96)00166-6
    [15]
    Snyder W C, Wan Z. BRDF Models to Predict Spectral Reflectance and Emissivity in the Thermal Infrared[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(1): 214-225 doi: 10.1109/36.655331
    [16]
    Yang Y, Cao C, Pan X, et al. Downscaling Land Surface Temperature in an Arid Area by Using Multiple Remote Sensing Indices with Random Forest Regression[J]. Remote Sensing, 2017, 9(8): 789-795 doi: 10.3390/rs9080789
    [17]
    Zhu X, Chen J, Gao F, et al. An Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model for Complex Heterogeneous Regions[J]. Remote Sensing of Environment, 2010, 114(11): 2 610-2 623 doi: 10.1016/j.rse.2010.05.032
    [18]
    Kustas W P, Norman J M, Anderson M C, et al. Estimating Subpixel Surface Temperatures and Energy Fluxes from the Vegetation Index-Radiometric Temperature Relationship[J]. Remote Sensing of Environment, 2003, 85(4): 429-440 doi: 10.1016/S0034-4257(03)00036-1
    [19]
    Gao F, Masek J, Schwaller M, et al. On the Blending of the Landsat and MODIS Surface Reflectance: Predicting Daily Landsat Surface Reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2 207-2 218 doi: 10.1109/TGRS.2006.872081
    [20]
    Savitzky A, Golay M J E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures[J]. Analytical Chemistry, 1964, 36(8): 1 627-1 639 doi: 10.1021/ac60214a047
    [21]
    贾明明, 王宗明, 张柏, 等. 综合环境卫星与MODIS数据的面向对象土地覆盖分类方法[J]. 武汉大学学报·信息科学版, 2014, 39(3): 305-310 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201403012.htm

    Jia Mingming, Wang Zongming, Zhang Bai, et al. Land Cover Classification of Compositing HJ-1 and MODIS Data Based on Object-based Method[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 305-310 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201403012.htm
    [22]
    马晋, 周纪, 刘绍民, 等. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629 https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201706006.htm

    Ma Jin, Zhou Ji, Liu Shaomin, et al. Review on Validation of Remotely Sensed Land Surface Temperature[J]. Advances in Earth Science, 2017, 32(6): 615-629 https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201706006.htm
    [23]
    Van den Bergh F, Van Wyk M A, Van Wyk B J, et al. Comparison of Data-Driven and Model-Driven Approaches to Brightness Temperature Diurnal Cycle Interpolation[C]//The 17th Annual Symposium of the Pattern Recognition Association of South Africa, Parys, South Africa, 2006
  • Related Articles

    [1]WANG Jiachen, WANG Jing, LIU Chengbao, YANG Lei, SHANG Jian, ZHANG Zhiqing, CAO Yun. Orbit Motion Compensation Modeling and Simulation Analysis for FY-4 Geostationary Meteorological Satellite[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1879-1890. DOI: 10.13203/j.whugis20220314
    [2]LU Wenqiang, HU Xiuqing, HUANG Yong, GAO Xudong, ZHAO Xinglong. Analysis of FY‑3D Satellite Attitude and Orbit Accuracy and Its Influence on Geolocation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 256-263. DOI: 10.13203/j.whugis20210403
    [3]XU Xiaohua, ZHANG Jiman, LUO Jia, GAO Pan. Retrieval and Validation of FY-3C Radio Occultation Refractivities[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 36-44. DOI: 10.13203/j.whugis20190361
    [4]ZHU Zhouzong, XU Xiaohua, LUO Jia. Inversion and Analysis of Atmospheric Boundary Layer Height Using FY-3C Radio Occultation Refractive Index Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(3): 395-401. DOI: 10.13203/j.whugis20190271
    [5]XU Xiaohua, ZHU Zhouzong, LUO Jia. Quality Analysis of the Neutral Atmospheric Products from FY-3C Radio Occultation Based on IGRA2 Radiosonde Data and COSMIC Radio Occulation Products[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 384-393. DOI: 10.13203/j.whugis20180490
    [6]LI Zonghua, MENG Cheng, ZHOU Haiyan, PAN Chenling. A Method of Updating Geographical Elements Based on 4D Fluent Ontology Construction Project Spatio-Temporal Data Model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2310-2316. DOI: 10.13203/j.whugis20180173
    [7]LIU Liangming, YE Yuanxin, FAN Dengke, XU Qi. Study on Geometric Rectification for FY-2 S-VISSR Data[J]. Geomatics and Information Science of Wuhan University, 2012, 37(4): 384-388.
    [8]XIANG Daxiang, LIU Liangming, HAN Tao. Estimation of Drought Monitoring Ability of FY-3A MERSI Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 334-338.
    [9]WEN Xiongfei, DONG Xinyi, LIU Liangming. Cloud Index Method for Cloud Detection[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 838-841.
    [10]Liu Fengde, Jia Weiping, Qiu Feng, Liu Xianlin. JX-4A Digital Photogrammetric System[J]. Geomatics and Information Science of Wuhan University, 1996, 21(3): 269-272,276.
  • Cited by

    Periodical cited type(12)

    1. 蒲伦,游为,余彪,范东明. 基于优化预处理方法的时变重力场反演精度分析. 大地测量与地球动力学. 2025(01): 72-79 .
    2. 温志强,唐河,孙文科. 实际地形面上的负荷重力效应近似计算. 地球物理学报. 2025(02): 444-455 .
    3. 张锦绣,陶文舰,连晓斌,王继河,孟云鹤,刘源. 空间引力波探测无拖曳技术现状与趋势. 国防科技大学学报. 2024(02): 1-17 .
    4. 尹智,张克非,段亚博,刘军生,穆庆禄. 地球科学和深空探测的引力场建模理论研究进展. 地球与行星物理论评(中英文). 2024(05): 501-512 .
    5. 李婉秋,郭秋英,章传银,王伟,钟玉龙,李伟,徐鹏飞. 利用独立成分分析法研究新疆地区陆地水储量及其地壳垂向变化. 武汉大学学报(信息科学版). 2024(05): 794-804 .
    6. 曹杰,肖云,龙笛,崔英杰,刘淼,张锦柏,王宇康,洪晓东,陈垲宁. 联合重力卫星和水井资料监测华北平原地下水储量变化. 武汉大学学报(信息科学版). 2024(05): 805-818 .
    7. 郭丁昊,王长青,朱紫彤,熊宇昊,杨萌,钟敏,沈云中,陈秋杰,冯伟. 多卫星星座对时变重力场反演精度和时空分辨率影响的模拟研究. 地球物理学报. 2024(06): 2125-2140 .
    8. 瞿伟,陈沛男,张普方,唐兴友,李久元. GRACE/GRACE-FO揭示黄河上游2002-2022年GWS及可持续性时空演化. 武汉大学学报(信息科学版). 2024(08): 1287-1299+1336 .
    9. 苏勇,李建成,徐新禹,王长青,余彪,李琼,谷延超. 重力卫星数据反演地表质量变化的点质量模型法研究进展. 武汉大学学报(信息科学版). 2024(09): 1503-1516 .
    10. 屈少波,白彦峥,刘力,马云,王梁,吴书朝,于健博,周泽兵. 空间静电加速度计地面测试方法、技术与应用. 武汉大学学报(信息科学版). 2024(11): 2028-2036 .
    11. 王凤彬,赵淑红. 基于卫星轨道数据的地球重力场反演方法研究. 先进小卫星技术(中英文). 2024(05): 31-38 .
    12. 褚江东,粟晓玲,姜田亮,胡雪雪,张特,吴海江. GRACE数据反演水储量及监测干旱的应用现状与展望. 遥感技术与应用. 2023(05): 1003-1016 .

    Other cited types(3)

Catalog

    Article views (1044) PDF downloads (87) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return