WANG Aihui, YANG Yingbao, PAN Xin, HU Jiejunde. Land Surface Temperature Reconstruction Model of FY-4A Cloudy Pixels Considering Spatial and Temporal Characteristics[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 852-862. DOI: 10.13203/j.whugis20200039
Citation: WANG Aihui, YANG Yingbao, PAN Xin, HU Jiejunde. Land Surface Temperature Reconstruction Model of FY-4A Cloudy Pixels Considering Spatial and Temporal Characteristics[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 852-862. DOI: 10.13203/j.whugis20200039

Land Surface Temperature Reconstruction Model of FY-4A Cloudy Pixels Considering Spatial and Temporal Characteristics

Funds: 

The National Natural Science Foundation of China 42071346

The National Natural Science Foundation of China 41701487

More Information
  • Author Bio:

    WANG Aihui, postgraduate, specializes in the application of thermal infrared remote sensing.E-mail: 15195892293@163.com

  • Corresponding author:

    YANG Yingbao, PhD, professor.E-mail: yyb@hhu.edu.cn

  • Received Date: May 30, 2020
  • Published Date: June 04, 2021
  •   Objectives  Resorting to remote sensing technology, land surface temperature (LST) data of high spatial and temporal resolution can be conveniently acquired. However, due to the influence of bad weather conditions such as cloud and rain, there are many null values in those LST data, being an obstacle to the further application of LST data.
      Methods  A novel null reconstruction model of LST based on spatial and temporal characteristics is proposed.Firstly, the reconstruction of partial null values of LST data is realized by weighting the effective records of the same period within contiguous days in the time domain, followed the intrinsic assumption that the changes of LST data in adjacent time periods are similar. Secondly, the reconstruction of other null valued pixels are reconstructed in the spatial domain, based on the assumption that adjacent similar pixels have similar LST. The similar pixels are searched by the normalized vegetation index (NDVI). In addition, due to the influence of extreme weather conditions, the above two steps are repeated several times until all null pixels are entirely reconstructed. Finally, Savitzky-Golay (S-G) filter is employed to remove the noise of the reconstructed LST data.
      Results  Compared to the in-situ data, the root mean squared errors (RMSE) of the LST data of all the FY-4A before and after reconstruction are 4.805 K and 6.969 K, respectively. Their determination coefficients (R2) are 0.842 and 0.605, respectively. Under clear sky conditions, RMSEs of FY-4A LST data before and after reconstruction are 3.392 K and 5.016 K, respectively, and their R2 are 0.948 and 0.874, respectively. Under cloudy weather conditions, RMSE and R2 of reconstructed LST data are 5.053 K and 0.726, respectively. Under rainy weather conditions, RMSE and R2 of reconstructed LST data are 7.872 K and 0.313, respectively. Compared with the original LST data of FY-4A, the RMSE of the reconstructed data ranges 0.483-0.507 K and the R2 ranges 0.846-0.976 for the null value regions of different sizes in spatial domain. RMSE ranges 0.405-1.915 K and R2 ranges 0.952-0.989 for invalid LST time series of different sizes in time domain.
      Conclusions  The proposed null reconstruction model of LST can accomplish effective reconstruction not only for clear weather, but also for cloudy weather of long time series. Excluding the error of FY-4A LST data, RMSE of reconstruction results reaches 2.171 K. When the number of LST valid pixels is very small, the invalid LST can also be effectively reconstructed by the proposed model, which is tough for the diurnal temperature cycle (DTC) model.
  • [1]
    Li Z L, Tang B H, Wu H, et al. Satellite- Derived Land Surface Temperature: Current Status and Perspectives[J]. Remote Sensing of Environment, 2013, 131: 14-37 doi: 10.1016/j.rse.2012.12.008
    [2]
    向大享, 刘良明, 韩涛. FY-3A MERSI数据干旱监测能力评价[J]. 武汉大学学报·信息科学版, 2010, 35(3): 334-338 http://ch.whu.edu.cn/article/id/888

    Xiang Daxiang, Liu Liangming, Han Tao. Estimation of Drought Monitoring Ability of FY-3A MERSI Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 334-338 http://ch.whu.edu.cn/article/id/888
    [3]
    Ke L, Ding X, Song C. Reconstruction of Time-Series MODIS LST in Central Qinghai-Tibet Plateau Using Geostatistical Approach[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1 602-1 606 doi: 10.1109/LGRS.2013.2263553
    [4]
    颜金彪, 段晓旗, 郑文武, 等. 顾及空间异质性的自适应IDW插值算法[J]. 武汉大学学报·信息科学版, 2020, 45(1): 97-104 doi: 10.13203/j.whugis20180213

    Yan Jinbiao, Duan Xiaoqi, Zheng Wenwu, et al. Geomatics and Information Science of Wuhan University[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 97-104 doi: 10.13203/j.whugis20180213
    [5]
    周义, 覃志豪, 包刚. GIDS空间插值法估算云下地表温度[J]. 遥感学报, 2012, 16(3): 492-504 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201203006.htm

    Zhou Yi, Qin Zhihao, Bao Gang. Land Surface Temperature Estimation Under Cloud Cover with GIDS[J]. Journal of Remote Sensing, 2012, 16(3): 492-504 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201203006.htm
    [6]
    Göttsche F M, Olesen F S. Modelling the Effect of Optical Thickness on Diurnal Cycles of Land Surface Temperature[J]. Remote Sensing of Environment, 2009, 113(11): 2 306-2 316 doi: 10.1016/j.rse.2009.06.006
    [7]
    Duan S B, Li Z L, Wang N, et al. Evaluation of Six Land-Surface Diurnal Temperature Cycle Models Using Clear-Sky in Situ and Satellite Data[J]. Remote Sensing of Environment, 2012, 124: 15-25 doi: 10.1016/j.rse.2012.04.016
    [8]
    刘紫涵, 吴鹏海, 吴艳兰, 等. 风云静止卫星地表温度产品空值数据稳健修复[J]. 遥感学报, 2017, 21(1): 40-51 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201701004.htm

    Liu Zihan, Wu Penghai, Wu Yanlan, et al. Robust Reconstruction of Missing Data in Feng Yun Geostationary Satellite Land Surface Temperature Products[J]. Journal of Remote Sensing, 2017, 21(1): 40-51 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201701004.htm
    [9]
    薛兴盛, 吴艳兰. 面向风云静止卫星地表温度产品的缺失数据修复方法对比[J]. 安徽农业大学学报, 2017, 44(2): 308-315 https://www.cnki.com.cn/Article/CJFDTOTAL-ANHU201702022.htm

    Xue Xingsheng, Wu Yanlan. A Comparison of Missing Data Reconstruction Methods for Feng Yun Geostationary Satellite Land Surface Temperature Products[J]. Journal of Anhui Agricultural University, 2017, 44(2): 308-315 https://www.cnki.com.cn/Article/CJFDTOTAL-ANHU201702022.htm
    [10]
    李国亮. 2000—2012年黑河流域上游植被覆盖变化遥感监测与分析[D]. 兰州: 西北师范大学, 2015

    Li Guoliang. Remote Sensing Monitoring and Analysis of Vegetation Cover Change in the Heihe River Basin from 2000—2012[D]. Lanzhou: Northwest Normal University, 2015
    [11]
    张志清, 董瑶海, 丁雷, 等. 我国首颗第二代静止气象卫星风云-4升空[J]. 国际太空, 2016, 12: 6-12 https://www.cnki.com.cn/Article/CJFDTOTAL-GJTK201612003.htm

    Zhang Zhiqing, Dong Yaohai, Ding Lei, et al. China's First Second-Generation FY-4 Meteorological Satellite Launched[J]. Space International, 2016, 12: 6-12 https://www.cnki.com.cn/Article/CJFDTOTAL-GJTK201612003.htm
    [12]
    谭仲辉, 马烁, 韩丁, 等. 基于随机森林算法的FY-4A云底高度估计方法[J]. 红外与毫米波学报, 2019, 38(3): 381-388 https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201903020.htm

    Tan Zhonghui, Ma Shuo, Han Ding, et al. Estimation of Cloud Base Height for FY-4A Satellite Based on Random Forest Algorithm[J]. Journal of Infrared and Milmillimeter Waves, 2019, 38(3): 381-388 https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201903020.htm
    [13]
    Holben B N. Characteristics of Maximum-Value Composite Images from Temporal AVHRR Data[J]. International Journal of Remote Sensing, 1986, 7(11): 1 417-1 434 doi: 10.1080/01431168608948945
    [14]
    Snyder W C, Wan Z, Zhang Y, et al. Thermal Infrared (3-14 μm) Bidirectional Reflectance Measurements of Sands and Soils[J]. Remote Sensing of Environment, 1997, 60(1): 101-109 doi: 10.1016/S0034-4257(96)00166-6
    [15]
    Snyder W C, Wan Z. BRDF Models to Predict Spectral Reflectance and Emissivity in the Thermal Infrared[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(1): 214-225 doi: 10.1109/36.655331
    [16]
    Yang Y, Cao C, Pan X, et al. Downscaling Land Surface Temperature in an Arid Area by Using Multiple Remote Sensing Indices with Random Forest Regression[J]. Remote Sensing, 2017, 9(8): 789-795 doi: 10.3390/rs9080789
    [17]
    Zhu X, Chen J, Gao F, et al. An Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model for Complex Heterogeneous Regions[J]. Remote Sensing of Environment, 2010, 114(11): 2 610-2 623 doi: 10.1016/j.rse.2010.05.032
    [18]
    Kustas W P, Norman J M, Anderson M C, et al. Estimating Subpixel Surface Temperatures and Energy Fluxes from the Vegetation Index-Radiometric Temperature Relationship[J]. Remote Sensing of Environment, 2003, 85(4): 429-440 doi: 10.1016/S0034-4257(03)00036-1
    [19]
    Gao F, Masek J, Schwaller M, et al. On the Blending of the Landsat and MODIS Surface Reflectance: Predicting Daily Landsat Surface Reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2 207-2 218 doi: 10.1109/TGRS.2006.872081
    [20]
    Savitzky A, Golay M J E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures[J]. Analytical Chemistry, 1964, 36(8): 1 627-1 639 doi: 10.1021/ac60214a047
    [21]
    贾明明, 王宗明, 张柏, 等. 综合环境卫星与MODIS数据的面向对象土地覆盖分类方法[J]. 武汉大学学报·信息科学版, 2014, 39(3): 305-310 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201403012.htm

    Jia Mingming, Wang Zongming, Zhang Bai, et al. Land Cover Classification of Compositing HJ-1 and MODIS Data Based on Object-based Method[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 305-310 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201403012.htm
    [22]
    马晋, 周纪, 刘绍民, 等. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629 https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201706006.htm

    Ma Jin, Zhou Ji, Liu Shaomin, et al. Review on Validation of Remotely Sensed Land Surface Temperature[J]. Advances in Earth Science, 2017, 32(6): 615-629 https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201706006.htm
    [23]
    Van den Bergh F, Van Wyk M A, Van Wyk B J, et al. Comparison of Data-Driven and Model-Driven Approaches to Brightness Temperature Diurnal Cycle Interpolation[C]//The 17th Annual Symposium of the Pattern Recognition Association of South Africa, Parys, South Africa, 2006
  • Related Articles

    [1]LI Qingzhu, LI Zhining, ZHANG Yingtang, FAN Hongbo, YIN Gang. Integrated Vector Calibration of Magnetic Gradient Tensor System Using Nonlinear Method[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 714-722, 730. DOI: 10.13203/j.whugis20170161
    [2]LIU Bin, GUO Jiming, SHI Junbo, WU Dijun. A GPS Height Fitting Method Based on the EGM2008 Model and Terrain Correction[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 554-558. DOI: 10.13203/j.whugis20160249
    [3]ZHAN Yinhu, ZHENG Yong, ZHANG Chao, ZHANG Zhongkai, LI Zhuyang, MA Gaofeng. Spherical Circle Fitting Algorithm and Its Application on Azimuth Determination by Observing the Moon[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1514-1519. DOI: 10.13203/j.whugis20130562
    [4]WEI Erhu, LI Zhiqiang, GONG Guangyu, ZHANG Shuai. Fitting and Prediction of Pole Motion Time Series Model[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1420-1424.
    [5]SHU Chanfang, LI Fei, HAO Weifeng. Geoid/Quasigeoid Fitting Based on Equivalent Point Masses[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 231-234.
    [6]ZENG Qihong, MAO Jianhua, LI Xianhua, LIU Xuefeng. Planar-Fitting Filtering Algorithm for LIDAR Points Cloud[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 25-28.
    [7]WANG Jiexian. A Method for Fitting of Conicoid in Industrial Measurement[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 47-50.
    [8]ZHANG Mengjun, SHU Hong, LIU Yan, WANG Tao. An Adaptive Thresholding Approach Based on Spatial Curved Surface Fitting[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 395-398.
    [9]ZHOU Yunyao, CAI Yaxian. Correlation Processing Techniques in Frequency-domain Calibration for Very Broadband Seismometer—Raising Sinewave Calibration Precision Under Strong Noise by Using Vertical Correlation Method[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 632-635.
    [10]GAO Wei, XU Shaoquan. Subregional Fitting and Transforming GPS Height into Normal Height[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 908-911.
  • Cited by

    Periodical cited type(4)

    1. 梁志国,梁家奕. 正弦参数拟合误差量子化阶梯分布机理分析. 计量学报. 2024(10): 1555-1561 .
    2. 宁一鹏,毕京学,姚国标,桑文刚,郭秋英. 简化磁力计非线性误差模型的快速校正算法. 测绘科学. 2021(01): 36-41+55 .
    3. 于向前,刘斯,肖池阶,曲亚楠,宗秋刚,陈鸿飞,邹鸿,施伟红,王永福,陈傲,宋思宇,高爽,邵思霈. 基于椭球拟合的三轴磁强计两步校准法. 仪表技术与传感器. 2021(04): 52-56 .
    4. 张莺莺,张晓明,高丽珍,薛羽阳,刘俊. 弹载磁测系统等效安装误差的在线标定与补偿. 计算机测量与控制. 2021(08): 158-162 .

    Other cited types(5)

Catalog

    Article views (1044) PDF downloads (87) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return