LI Sida, LIU Lintao, LIU Zhiping, AI Qingsong. Robust Total Least Squares Method for Multivariable EIV Model[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1241-1248. DOI: 10.13203/j.whugis20170232
Citation: LI Sida, LIU Lintao, LIU Zhiping, AI Qingsong. Robust Total Least Squares Method for Multivariable EIV Model[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1241-1248. DOI: 10.13203/j.whugis20170232

Robust Total Least Squares Method for Multivariable EIV Model

Funds: 

The National Key Scientific Instrument and Equipment Development Project, Ministry of Science and Technology of the People's Republic of China 2011YQ120045

the National Natural Science Foundation of China 41074050

the National Natural Science Foundation of China 41204011

the National Natural Science Foundation of China 41504032

the National Key Research and Development Program of China 2016YFC0803103

the National Key Research and Development Program of China 2016YFB0502102

the Open Foundation of Key Laboratory of Precise Engineering and Industry Surveying of NSMG PF2017-12

More Information
  • Author Bio:

    LI Sida, PhD candidate, specializes in surveying data processing. E-mail:sdlicumt@163.com

  • Corresponding author:

    LIU Zhiping, PhD, associate professor. E-mail:zhpliu@cumt.edu.cn

  • Received Date: December 05, 2018
  • Published Date: August 04, 2019
  • The reliability of the solution to the errors-in-variables (EIV) model can be improved through robust total least square method. The false robust estimation problem that the existed robust total least squares method gives priority to reduce the weights of some columns which have large product of estimated parameters and prior cofactors in the multivariable EIV model is pointed out in detail. To tackle this problem, a new robust estimation strategy is presented based on Huber weight function. This new robust estimation strategy copes with each column variable respectively to avoid the false robust estimation problem. Based on this new robust estimation strategy, a multivariate robust total least squares method is proposed and the corresponding estimation results of parameters and variance-covariance matrix are deduced. Experiment results verify the analysis about false robust estimation problem and show the validity of proposed method in coping with false robust estimation problem and detecting the gross error in multivariable EIV model. And compared with the total least squares method and traditional robust least squares method, the proposed method in this paper gets the nearest parameter estimation results to the real value.
  • [1]
    杨元喜, 宋力杰, 徐天河.大地测量相关观测抗差估计理论[J].测绘学报, 2002, 31(2):95 -99 doi: 10.3321/j.issn:1001-1595.2002.02.001

    Yang Yuanxi, Song Lijie, Xu Tianhe. Robust Parameter Estimation for Geodetic Correlated Observations[J]. Acta Geodaetica et Cartographica Sinica, 2002, 31(2): 95-99 doi: 10.3321/j.issn:1001-1595.2002.02.001
    [2]
    刘经南, 姚宜斌, 施闯.基于等价方差-协方差阵的稳健最小二乘估计理论研究[J].测绘科学, 2000, 25(3):1-6 doi: 10.3771/j.issn.1009-2307.2000.03.001

    Liu Jingnan, Yao Yibin, Shi Chuang. Theory Research on Robustified Least Squares Estimation Based on Equivalent Variance Covariance[J]. Science of Surveying and Mapping, 2000, 25(3) : 1-6 doi: 10.3771/j.issn.1009-2307.2000.03.001
    [3]
    葛旭明, 伍吉仓.三维基准转换的约束加权混合整体最小二乘的迭代解法[J].武汉大学学报·信息科学版, 2012, 37(2):178-1 82 http://ch.whu.edu.cn/CN/abstract/abstract124.shtml

    Ge Xuming, Wu Jicang. Iterative Method of Weight Constraint Total Least-Squares for Three-Dimensional Datum Transformation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 178-182 http://ch.whu.edu.cn/CN/abstract/abstract124.shtml
    [4]
    陈义, 陆珏.以三维坐标转换为例解算稳健总体最小二乘方法[J].测绘学报, 2012, 41(5):715-722 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201205017.htm

    Chen Yi, Lu Jue. Performing 3D Similarity Transformation by Robust Total Least Squares[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5): 715-722 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201205017.htm
    [5]
    Liu Z, Li S, Bian H. An Improved Mixed Total Least Squares Method for Strain Inversion from Distance Changes[J]. Geodesy and Geodynamics, 2016, 7(5):356-360 doi: 10.1016/j.geog.2016.05.009
    [6]
    王乐洋, 许才军, 鲁铁定.边长变化反演应变参数的总体最小二乘方法[J].武汉大学学报·信息科学版, 2010, 35(2):181-184 http://ch.whu.edu.cn/CN/abstract/abstract844.shtml

    Wang Leyang, Xu Caijun, Lu Tieding. Inversion of Strain Parameter Using Distance Changes Based on Total Least Squares[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2): 181-184 http://ch.whu.edu.cn/CN/abstract/abstract844.shtml
    [7]
    吴波, 汪小钦, 张良培.端元光谱自动提取的总体最小二乘迭代分解[J].武汉大学学报·信息科学版, 2008, 33(5):457-460 http://ch.whu.edu.cn/CN/abstract/abstract1596.shtml

    Wu Bo, Wang Xiaoqin, Zhang Liangpei. Iterative Abstraction of Endmember Based on Total Least Square for Mixture Pixel Decomposition[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 457-460 http://ch.whu.edu.cn/CN/abstract/abstract1596.shtml
    [8]
    方兴, 曾文宪, 刘经南, 等.基于非线性高斯-赫尔默特模型的混合整体最小二乘估计[J].测绘学报, 2016, 45(3):291-296 http://d.old.wanfangdata.com.cn/Periodical/chxb201603007

    Fang Xing, Zeng Wenxian, Liu Jingnan, et al. Mixed LS-TLS Estimation Based on Nonlinear Gauss-Helmert Model[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(3): 291-296 http://d.old.wanfangdata.com.cn/Periodical/chxb201603007
    [9]
    Zhou Y, Kou X, Zhu J, et al. A Newton Algorithm for Weighted Total Least-Squares Solution to a Specific Errors-in-Variables Model with Correlated Measurements[J]. Studia Geophysica et Geodaetica, 2014, 58(3):349-375 doi: 10.1007/s11200-013-0254-7
    [10]
    Mahboub V, Ardalan A A, Ebrahimzadeh S. Adjustment of Non-typical Errors-in-Variables Models[J]. Acta Geodaetica et Geophysica, 2015, 50(2):207-218 doi: 10.1007/s40328-015-0109-5
    [11]
    Fang X. Weighted Total Least-Squares with Constraints: A Universal Formula for Geodetic Symmetrical Transformations[J]. Journal of Geodesy, 2015, 89(5):459-469 doi: 10.1007/s00190-015-0790-8
    [12]
    Mahboub V, Amirisimkooei A R, Sharifi M A. Iteratively Reweighted Total Least Squares: A Robust Estimation in Errors-in-Variables Models[J]. Survey Review, 2013, 45(329):92-99 http://cn.bing.com/academic/profile?id=5572cdbe63423d9bc7c8189ab69ebabf&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    Lu J, Chen Y, Li B F, et al. Robust Total Least Squares with Reweighting Iteration for Three-dimensional Similarity Transformation[J]. Survey Review, 2014, 46(334):28-36 doi: 10.1179/1752270613Y.0000000050
    [14]
    Wang B, Li J, Liu C. A Robust Weighted Total Least Squares Algorithm and Its Geodetic Applications[J]. Studia Geophysica et Geodaetica, 2016, 60(2):1-18
    [15]
    龚循强, 李志林.一种利用IGGⅡ方案的稳健混合总体最小二乘方法[J].武汉大学学报·信息科学版, 2014, 39(4):462-466 http://ch.whu.edu.cn/CN/abstract/abstract2964.shtml

    Gong Xunqiang, Li Zhilin. A Robust Mixed LS-TLS Based on IGG Ⅱ Scheme[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 462-466 http://ch.whu.edu.cn/CN/abstract/abstract2964.shtml
    [16]
    龚循强, 李志林.稳健加权总体最小二乘法[J].测绘学报, 2014, 43(9):888-894 http://d.old.wanfangdata.com.cn/Periodical/kckxjs201301005

    Gong Xunqiang, Li Zhilin. Robust Weighted Total Least Squares Based on IGG Weighting Function[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9): 888-894 http://d.old.wanfangdata.com.cn/Periodical/kckxjs201301005
    [17]
    陶叶青, 高井祥, 姚一飞.基于中位数法的抗差总体最小二乘估计[J].测绘学报, 2016, 45(3):297-301 http://d.old.wanfangdata.com.cn/Periodical/chxb201603008

    Tao Yeqing, Gao Jingxiang, Yao Yifei. Solution for Robust Total Least Squares Estimation Based on Median Method[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(3): 297-301 http://d.old.wanfangdata.com.cn/Periodical/chxb201603008
    [18]
    Schaffrin B, Lee I, Felus Y, et al. Total Least-Squares (TLS) for Geodetic Straight-line and Plane Adjustment[J]. Bollettino Di Geodesia E Scienze Affini, 2006, 65(3):141-168
    [19]
    Schaffrin B, Wieser A. On Weighted Total Least-Squares Adjustment for Linear Regression[J]. Journal of Geodesy, 2008, 82(7):415-421 doi: 10.1007/s00190-007-0190-9
  • Related Articles

    [1]WU Jiaqi, JIANG Yonghua, SHEN Xin, LI Beibei, PAN Shenlin. Satellite Video Motion Detection Supported by Decision Tree Weak Classification[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1182-1190. DOI: 10.13203/j.whugis20180094
    [2]FU Zisheng, LI Qiuping, LIU Lin, ZHOU Suhong. Identification of Urban Network Congested Segments Using GPS Trajectories Double-Clustering Method[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1264-1270. DOI: 10.13203/j.whugis20150036
    [3]DENG Min, CHEN Ti, YANG Wentao. A New Method of Modeling Spatio-temporal Sequence by Considering Spatial Scale Characteristics[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1625-1632. DOI: 10.13203/j.whugis20130842
    [4]FU Zhongliang, LIU Siyuan. MR-tree with Voronoi Diagrams for Parallel Spatial Queries[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1490-1494.
    [5]HE Chu, LIU Ming, XU Lianyu, LIU Longzhu. A Hierarchical Classification Method Based on Feature Selection and Adaptive Decision Tree for SAR Image[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 46-49.
    [6]ZHANG Lu, GAO Zhihong, LIAO Mingsheng, LI Xinyan. Estimating Urban Impervious Surface Percentage with Multi-source Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1212-1216.
    [7]HAN Tao, XU Xiaotao, XIE Yaowen. Automated Construction and Classification of Decision Tree Classifier Based on Single-Temporal MODIS Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 191-194.
    [8]LIAO Mingsheng, JIANG Liming, LIN Hui, YANG Limin. Estimating Urban Impervious Surface Percent Using Boosting as a Refinement of CART Analysis[J]. Geomatics and Information Science of Wuhan University, 2007, 32(12): 1099-1102.
    [9]YU Xin, ZHENG Zhaobao, YE Zhiwei, TIAN Liqiao. Texture Classification Based on Tree Augmented Naive Bayes Classifier[J]. Geomatics and Information Science of Wuhan University, 2007, 32(4): 287-289.
    [10]GUO Jing, LIU Guangjun, DONG Xurong, GUO Lei. 2-Level R-tree Spatial Index Based on Spatial Grids and Hilbert R-tree[J]. Geomatics and Information Science of Wuhan University, 2005, 30(12): 1084-1088.
  • Cited by

    Periodical cited type(13)

    1. 陈月,王磊,池深深,王羽,戚鑫鑫,朱尚军. 基于SBAS-InSAR和CNN-GRU模型的采动村庄地表沉降监测预计. 金属矿山. 2025(02): 138-144 .
    2. 何毅,姚圣,陈毅,闫浩文,张立峰. ConvLSTM神经网络的时序InSAR地面沉降时空预测. 武汉大学学报(信息科学版). 2025(03): 483-496 .
    3. 倪尔瑞,张建新,邱明剑,权力奥,朱晓峻. 基于SBAS-InSAR技术的淮北市地表沉降监测分析. 北京测绘. 2024(03): 312-317 .
    4. 吴启琛,于瑞鹏,王丽,赵乙泽,范开放. 利用Sentinel-1的山东枣庄高新区地面沉降监测与分析. 地理空间信息. 2024(06): 80-83 .
    5. 杨芳,丁仁军,李勇发. 基于SBAS-InSAR技术的金沙江流域典型滑坡时空演化特征分析. 测绘通报. 2024(11): 102-107 .
    6. 祝杰,李瑜,师宏波,刘洋洋,韩宇飞,邵银星,王坦. 鹤岗煤矿区地面沉降时空特征InSAR时间序列监测研究. 中国地震. 2023(03): 596-608 .
    7. 柴龙飞,魏路,张震. 基于SBAS-InSAR的安徽省宿州市埇桥区2019—2022年地面沉降监测及影响因素分析研究. 安徽地质. 2023(04): 348-352 .
    8. 祝杰,韩宇飞,王坦,李瑜,王阅兵,师宏波,刘洋洋,樊俊屹,邵银星. 2017年九寨沟M_S7.0地震同震地表三维形变场解算研究. 中国地震. 2022(02): 348-359 .
    9. 吴毅彬,葛红斌,刘光庆,刘海旺. 基于MT-InSAR技术的厦门新机场填海区沉降监测. 工程勘察. 2021(02): 57-61 .
    10. 翟振起. 基于InSAR沉降监测技术的城市供水管线安全监测系统开发. 水利科学与寒区工程. 2021(01): 103-106 .
    11. 廖明生,王茹,杨梦诗,王楠,秦晓琼,杨天亮. 城市目标动态监测中的时序InSAR分析方法及应用. 雷达学报. 2020(03): 409-424 .
    12. 熊寻安,王明洲,龚春龙. MT-InSAR技术监测水库土石坝表面变形研究. 测绘地理信息. 2019(05): 78-81 .
    13. 王茹,杨天亮,杨梦诗,廖明生,林金鑫,张路. PS-InSAR技术对上海高架路的沉降监测与归因分析. 武汉大学学报(信息科学版). 2018(12): 2050-2057 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return