LIU Shanhong, YAN Jianguo, YANG Xuan, YE Mao, JIN Weitong, LI Fei. Development of Mercury Precise Orbit Determination Software and Application[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 510-517. DOI: 10.13203/j.whugis20170211
Citation: LIU Shanhong, YAN Jianguo, YANG Xuan, YE Mao, JIN Weitong, LI Fei. Development of Mercury Precise Orbit Determination Software and Application[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 510-517. DOI: 10.13203/j.whugis20170211

Development of Mercury Precise Orbit Determination Software and Application

Funds: 

The National Natural Science Foundation of China 41374024

The National Natural Science Foundation of China 41174019

Innovation Group of Natural Science Fundation of Hubei Province 2015CFA011

More Information
  • Author Bio:

    LIU Shanhong, postgraduate, specializes in planetary spacecraft precision orbit determination. E-mail:shanhongliu@whu.edu.cn

  • Corresponding author:

    YAN Jianguo, PhD, professor. E-mail:jgyan@whu.edu.cn

  • Received Date: November 21, 2017
  • Published Date: April 04, 2019
  • We have developed the first Mercury precise orbit determination and geoscience parameters solution software system with independent intellectual property rights, MERGREAS, considering the great prospect of its future missions in China. The software simulates forecasting ephemeris, observations, and precise orbit determination (POD), and then results are compared with GEODYN-Ⅱ. The difference magnitude of the forecasting ephemeris is at 10-7-10-8 m in a day, and the speed deviation is at the magnitude of 10-9-10-12 m/s; besides, two-way range difference is 10-4 m and two-way range-rate difference is 4×10-6 m/s. In POD, the X direction error is 0.2 m, Y direction 0.7 m, Z direction 0.5 m, therefore, the simulation results show that the software precision of POD can reach the level of GEODYN-Ⅱ for MESSENGER. Meanwhile, we analyze the Mercury lander with simulation of same-beam very long base line interferometry(VLBI), with position error of 1 m for orbiter and 0.88 m for lander. With the errors combination from Mercury gravity models and Mercury rotation models taken into account, the position error is 13.6 m for orbiter and 250.3 m for lander. This software can provide reference for the Mercury tracking task in future. These research results have certain application value to China future Mercury exploration missions.
  • [1]
    中华人民共和国国务院新闻办公室. 《2016中国的航天》白皮书[J].中国航天, 2017(1):10-17 http://d.old.wanfangdata.com.cn/Periodical/zght201701003

    Information Office of the State Council of the People's Republic of China. "2016 China's Space" White Paper[J]. Erospace China, 2017(1):10-17 http://d.old.wanfangdata.com.cn/Periodical/zght201701003
    [2]
    段建锋, 张宇, 陈明, 等.嫦娥三号姿轨控过程中GRAIL重力场模型的应用[J].飞行器测控学报, 2014, 33(4):342-347 http://d.old.wanfangdata.com.cn/Periodical/fxqckxb201404012

    Duan Jianfeng, Zhang Yu, Chen Ming, et al. Application of GRAIL Lunar Gravity Field Model in Attitude and Orbit Control for CE-3 Satellite[J].Journal of Spacecraft TT and C Technology, 2014, 33(4):342-347 http://d.old.wanfangdata.com.cn/Periodical/fxqckxb201404012
    [3]
    Dunne J A. Mariner 10 Mercury Encounter[J]. Science, 1974, 185(4146):141-142 doi: 10.1126/science.185.4146.141
    [4]
    Solomon S C, Mcnutt Jr R L, Watters T R, et al. Return to Mercury:A Global Perspective on MESSENGER's First Mercury Flyby[J]. Science, 2008, 321(5885):59-62 doi: 10.1126/science.1159706
    [5]
    Mcnutt R L, Solomon S C, Gold R E, et al. The MESSENGER Mission to Mercury:Development History and Early Mission Status[J]. Advances in Space Research, 2006, 38(4):564-571 doi: 10.1016/j.asr.2005.05.044
    [6]
    Benkhoff J, van Casteren J, Hayakawa H, et al. BepiColombo-Comprehensive Exploration of Mercury:Mission Overview and Science Goals[J]. Planetary and Space Science, 2010, 58(1-2):2-20 doi: 10.1016/j.pss.2009.09.020
    [7]
    Mukai T, Yamakawa H, Hayakawa H, et al. Pre-sent Status of the BepiColombo/Mercury Magnetospheric Orbiter[J]. Advances in Space Research, 2006, 38(4):578-582 doi: 10.1016/j.asr.2005.09.038
    [8]
    叶茂.月球探测器精密定轨软件研制与四程中继跟踪测量模式研究[D].武汉: 武汉大学, 2016 http://www.cnki.com.cn/Article/CJFDTotal-CHXB201609018.htm

    Ye Mao. Development of Lunar Spacecraft Precision Orbit Determination Software System and Research on a Four Way Relay Tracking Measurement Mode[D]. Wuhan: Wuhan University, 2016 http://www.cnki.com.cn/Article/CJFDTotal-CHXB201609018.htm
    [9]
    Vetter J R. Fifty Years of Orbit Determination[J]. Johns Hopkins Apl Technical Digest, 2007, 27(3):239-252 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000000959661
    [10]
    Schettino G, Tommei G.Testing General Relativity with the Radio Science Experiment of the BepiColombo Mission to Mercury[J]. Universe, 2016, 2(3):21-46 doi: 10.3390/universe2030021
    [11]
    Evans S, Taber W, Drain T, et al. Monte: The Next Generation of Mission Design and Navigation Software[C]. 6th International Conference on Astrodynamics Tools and Techniques, Darmstadtium, Germany, 2016
    [12]
    Yan Jianguo, Xu Luyuan, Li Fei, et al. Lunar Core Structure Investigation:Implication of GRAIL Gravity Field Model[J]. Advances in Space Research, 2015, 55(6):1721-1727 doi: 10.1016/j.asr.2014.12.038
    [13]
    鄢建国.月球重力场研究及绕月卫星精密定轨[D].武汉: 武汉大学, 2007

    Yan Jianguo. Lunar Gravity Field Research and Lunar Satellite Precise Orbit Determination[D]. Wuhan: Wuhan University, 2007
    [14]
    Thornton C L, Border J S.Radiometric Tracking Techniques for Deep-Space Navigation[M]. US:John Wiley & Sons, 2003
    [15]
    金炜桐, 李斐, 杨轩, 等.行星际深空探测中双程测速的高精度计算方法研究[J].武汉大学学报·信息科学版, 2018, 43(10):1483-1489 http://ch.whu.edu.cn/CN/abstract/abstract6216.shtml

    Jin Weitong, Li Fei, Yang Xuan, et al. Research on High Precision Computational Method of Two-Way Range-Rate in Long-Distance Deep Space Exploration[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10):1483-1489 http://ch.whu.edu.cn/CN/abstract/abstract6216.shtml
    [16]
    Tiberis F D, Simone L, Gelfusa D, et al. The X/X/KA-band Deep Space Transponder for the BepiColombo Mission to Mercury[J].Acta Astronautica, 2011, 68(5-6):591-598 doi: 10.1016/j.actaastro.2010.01.023
    [17]
    Padovan S, Margot J L, Ii S A H, et al. The Tides of Mercury and Possible Implications for Its Interior Structure[J]. Journal of Geophysical Research Planets, 2014, 119(4):850-866 doi: 10.1002/2013JE004459
    [18]
    Verma A K, Margot J L.Mercury's Gravity, Tides, and Spin from MESSENGER Radio Science Data[J]. Journal of Geophysical Research Planets, 2016, 121(9):1627-1640 doi: 10.1002/2016JE005037
    [19]
    Stark A, Oberst J, Preusker F, et al. Mercury's Rotational Parameters from MESSENGER Image and Laser Altimeter Data:A Feasibility Study[J]. Planetary & Space Science, 2015, 117(1):64-72 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0235626636/
  • Related Articles

    [1]TIAN Fujuan, NIE Linjuan, ZHOU Xiaohui. Comparison of BDS-3 Satellite Attitude Quaternions Products from Different Analysis Centers and Their Application to PPP[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1891-1899. DOI: 10.13203/j.whugis20230366
    [2]CAO Xinyun, SHEN Fei, LI Jiancheng, ZHANG Shoujian. BDS-3/GNSS Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 92-100. DOI: 10.13203/j.whugis20210198
    [3]XU Changhui, GAO Jingxiang, ZHOU Feng, WANG Jian. Reliability Analysis of Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 709-713.
    [4]CAI Changsheng, ZHU Jianjun, DAI Wujiao, KUANG Cuilin. Modeling and Result Analysis of Combined GPS/GLONASS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12): 1474-1477.
    [5]WANG Zhiming, HUA Xianghong, LIU Yanyan. Influence Analysis of Satellite Clock Offset in Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11): 1339-1341.
    [6]YI Zhonghai, ZHU Jianjun, CHEN Yongqi, DAI Wujiao. An Improved Stochastic Model Considering Satellite Clock Interpolation Error in GPS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1165-1168.
    [7]LI Haojun, WANG Jiexian, WANG Hu, LI Bofeng. Precise Clock Error Estimation of GPS Satellite and Analysis Based on GNSS Network[J]. Geomatics and Information Science of Wuhan University, 2010, 35(8): 1001-1003.
    [8]ZHANG Xiaohong, GUO Fei, LI Xingxing, LIN Xiaojing. Study on Precise Point Positioning Based on Combined GPS and GLONASS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 9-12.
    [9]HAN Baomin, OU Jikun. Precise Point Positioning Based on Undifferenced GPS Data[J]. Geomatics and Information Science of Wuhan University, 2003, 28(4): 409-412.
    [10]LIU Jingnan, YE Shirong. GPS Precise Point Positioning Using Undifferenced Phase Observation[J]. Geomatics and Information Science of Wuhan University, 2002, 27(3): 234-240.
  • Cited by

    Periodical cited type(5)

    1. 朱武松. 抗差Helmert分量估计在地铁CPⅢ控制网平差中的应用. 城市勘测. 2024(02): 133-136 .
    2. 王乐洋,孙坚强. 总体最小二乘回归预测模型的方差分量估计. 武汉大学学报(信息科学版). 2021(02): 280-288 .
    3. 王祝安,陈义,毛鹏宇. 加权整体最小二乘的验后估计在三维坐标转换中的应用. 大地测量与地球动力学. 2018(02): 216-220 .
    4. 王乐洋,李海燕,陈晓勇. 拟牛顿修正法解算不等式约束加权总体最小二乘问题. 武汉大学学报(信息科学版). 2018(01): 127-132 .
    5. 陶武勇,鲁铁定,许光煜,杨世安. 稳健总体最小二乘Helmert方差分量估计. 大地测量与地球动力学. 2017(11): 1193-1197 .

    Other cited types(6)

Catalog

    Article views (1491) PDF downloads (205) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return