LIU Shanhong, YAN Jianguo, YANG Xuan, YE Mao, JIN Weitong, LI Fei. Development of Mercury Precise Orbit Determination Software and Application[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 510-517. DOI: 10.13203/j.whugis20170211
Citation: LIU Shanhong, YAN Jianguo, YANG Xuan, YE Mao, JIN Weitong, LI Fei. Development of Mercury Precise Orbit Determination Software and Application[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 510-517. DOI: 10.13203/j.whugis20170211

Development of Mercury Precise Orbit Determination Software and Application

Funds: 

The National Natural Science Foundation of China 41374024

The National Natural Science Foundation of China 41174019

Innovation Group of Natural Science Fundation of Hubei Province 2015CFA011

More Information
  • Author Bio:

    LIU Shanhong, postgraduate, specializes in planetary spacecraft precision orbit determination. E-mail:shanhongliu@whu.edu.cn

  • Corresponding author:

    YAN Jianguo, PhD, professor. E-mail:jgyan@whu.edu.cn

  • Received Date: November 21, 2017
  • Published Date: April 04, 2019
  • We have developed the first Mercury precise orbit determination and geoscience parameters solution software system with independent intellectual property rights, MERGREAS, considering the great prospect of its future missions in China. The software simulates forecasting ephemeris, observations, and precise orbit determination (POD), and then results are compared with GEODYN-Ⅱ. The difference magnitude of the forecasting ephemeris is at 10-7-10-8 m in a day, and the speed deviation is at the magnitude of 10-9-10-12 m/s; besides, two-way range difference is 10-4 m and two-way range-rate difference is 4×10-6 m/s. In POD, the X direction error is 0.2 m, Y direction 0.7 m, Z direction 0.5 m, therefore, the simulation results show that the software precision of POD can reach the level of GEODYN-Ⅱ for MESSENGER. Meanwhile, we analyze the Mercury lander with simulation of same-beam very long base line interferometry(VLBI), with position error of 1 m for orbiter and 0.88 m for lander. With the errors combination from Mercury gravity models and Mercury rotation models taken into account, the position error is 13.6 m for orbiter and 250.3 m for lander. This software can provide reference for the Mercury tracking task in future. These research results have certain application value to China future Mercury exploration missions.
  • [1]
    中华人民共和国国务院新闻办公室. 《2016中国的航天》白皮书[J].中国航天, 2017(1):10-17 http://d.old.wanfangdata.com.cn/Periodical/zght201701003

    Information Office of the State Council of the People's Republic of China. "2016 China's Space" White Paper[J]. Erospace China, 2017(1):10-17 http://d.old.wanfangdata.com.cn/Periodical/zght201701003
    [2]
    段建锋, 张宇, 陈明, 等.嫦娥三号姿轨控过程中GRAIL重力场模型的应用[J].飞行器测控学报, 2014, 33(4):342-347 http://d.old.wanfangdata.com.cn/Periodical/fxqckxb201404012

    Duan Jianfeng, Zhang Yu, Chen Ming, et al. Application of GRAIL Lunar Gravity Field Model in Attitude and Orbit Control for CE-3 Satellite[J].Journal of Spacecraft TT and C Technology, 2014, 33(4):342-347 http://d.old.wanfangdata.com.cn/Periodical/fxqckxb201404012
    [3]
    Dunne J A. Mariner 10 Mercury Encounter[J]. Science, 1974, 185(4146):141-142 doi: 10.1126/science.185.4146.141
    [4]
    Solomon S C, Mcnutt Jr R L, Watters T R, et al. Return to Mercury:A Global Perspective on MESSENGER's First Mercury Flyby[J]. Science, 2008, 321(5885):59-62 doi: 10.1126/science.1159706
    [5]
    Mcnutt R L, Solomon S C, Gold R E, et al. The MESSENGER Mission to Mercury:Development History and Early Mission Status[J]. Advances in Space Research, 2006, 38(4):564-571 doi: 10.1016/j.asr.2005.05.044
    [6]
    Benkhoff J, van Casteren J, Hayakawa H, et al. BepiColombo-Comprehensive Exploration of Mercury:Mission Overview and Science Goals[J]. Planetary and Space Science, 2010, 58(1-2):2-20 doi: 10.1016/j.pss.2009.09.020
    [7]
    Mukai T, Yamakawa H, Hayakawa H, et al. Pre-sent Status of the BepiColombo/Mercury Magnetospheric Orbiter[J]. Advances in Space Research, 2006, 38(4):578-582 doi: 10.1016/j.asr.2005.09.038
    [8]
    叶茂.月球探测器精密定轨软件研制与四程中继跟踪测量模式研究[D].武汉: 武汉大学, 2016 http://www.cnki.com.cn/Article/CJFDTotal-CHXB201609018.htm

    Ye Mao. Development of Lunar Spacecraft Precision Orbit Determination Software System and Research on a Four Way Relay Tracking Measurement Mode[D]. Wuhan: Wuhan University, 2016 http://www.cnki.com.cn/Article/CJFDTotal-CHXB201609018.htm
    [9]
    Vetter J R. Fifty Years of Orbit Determination[J]. Johns Hopkins Apl Technical Digest, 2007, 27(3):239-252 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000000959661
    [10]
    Schettino G, Tommei G.Testing General Relativity with the Radio Science Experiment of the BepiColombo Mission to Mercury[J]. Universe, 2016, 2(3):21-46 doi: 10.3390/universe2030021
    [11]
    Evans S, Taber W, Drain T, et al. Monte: The Next Generation of Mission Design and Navigation Software[C]. 6th International Conference on Astrodynamics Tools and Techniques, Darmstadtium, Germany, 2016
    [12]
    Yan Jianguo, Xu Luyuan, Li Fei, et al. Lunar Core Structure Investigation:Implication of GRAIL Gravity Field Model[J]. Advances in Space Research, 2015, 55(6):1721-1727 doi: 10.1016/j.asr.2014.12.038
    [13]
    鄢建国.月球重力场研究及绕月卫星精密定轨[D].武汉: 武汉大学, 2007

    Yan Jianguo. Lunar Gravity Field Research and Lunar Satellite Precise Orbit Determination[D]. Wuhan: Wuhan University, 2007
    [14]
    Thornton C L, Border J S.Radiometric Tracking Techniques for Deep-Space Navigation[M]. US:John Wiley & Sons, 2003
    [15]
    金炜桐, 李斐, 杨轩, 等.行星际深空探测中双程测速的高精度计算方法研究[J].武汉大学学报·信息科学版, 2018, 43(10):1483-1489 http://ch.whu.edu.cn/CN/abstract/abstract6216.shtml

    Jin Weitong, Li Fei, Yang Xuan, et al. Research on High Precision Computational Method of Two-Way Range-Rate in Long-Distance Deep Space Exploration[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10):1483-1489 http://ch.whu.edu.cn/CN/abstract/abstract6216.shtml
    [16]
    Tiberis F D, Simone L, Gelfusa D, et al. The X/X/KA-band Deep Space Transponder for the BepiColombo Mission to Mercury[J].Acta Astronautica, 2011, 68(5-6):591-598 doi: 10.1016/j.actaastro.2010.01.023
    [17]
    Padovan S, Margot J L, Ii S A H, et al. The Tides of Mercury and Possible Implications for Its Interior Structure[J]. Journal of Geophysical Research Planets, 2014, 119(4):850-866 doi: 10.1002/2013JE004459
    [18]
    Verma A K, Margot J L.Mercury's Gravity, Tides, and Spin from MESSENGER Radio Science Data[J]. Journal of Geophysical Research Planets, 2016, 121(9):1627-1640 doi: 10.1002/2016JE005037
    [19]
    Stark A, Oberst J, Preusker F, et al. Mercury's Rotational Parameters from MESSENGER Image and Laser Altimeter Data:A Feasibility Study[J]. Planetary & Space Science, 2015, 117(1):64-72 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0235626636/
  • Related Articles

    [1]DENG Bo, ZHANG Hui, BAI Jun, DONG Xiujun, JIN Dianqi, JIN Songyan, ZHANG Shaobiao. Hazard Evaluation of the Slope Based on Airborne LiDAR Data in Shenzhen, China[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1377-1391. DOI: 10.13203/j.whugis20220141
    [2]XU Caijun, HE Kefeng. Advancements in Earthquake Cycle Deformation Research Based on Geodetic Observations[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1736-1755. DOI: 10.13203/j.whugis20230304
    [3]XU Caijun, XIONG Wei, LIU Chuanjin. Progress in Studying of 3D Crustal Deformation and Seismic Risk Assessment of the Tibetan Plateau Using Geodetic Observations[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 997-1009. DOI: 10.13203/j.whugis20230126
    [4]XU Caijun, WANG Xiaohang, WEN Yangmao, LI Wei. Progress and Prospects of Seismic Geodetic Determination of Asperities[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1701-1712. DOI: 10.13203/j.whugis20220446
    [5]WANG Jiapei, ZHANG Xinlin, ZHANG Yi, LI Zhongya, HU Minzhang, SHEN Chongyang. Analysis of Gravity Variation and Vertical Crustal Deformation at Wuhan Jiufeng Seismic Station[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 964-971. DOI: 10.13203/j.whugis20220157
    [6]JIANG Ying, LIU Ziwei, ZHANG Xiaotong, ZHANG Lina, WEI Jin. Variation Features of b-Value Before and After the 2021 Maduo Mw 7.4 Earthquake[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 907-915. DOI: 10.13203/j.whugis20220071
    [7]LI Chong, LI Jiancheng, HUANG Ruijin, TAN Li. Discussion of Crustal Flow Beneath the Eastern Tibetan Plateau and Mechanism of the Wenchuan Earthquake[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 810-815. DOI: 10.13203/j.whugis20130655
    [8]Yin Myo Min Htwe, SHEN Wenbin, SUN Rong. Seismic Hazard Assessment in Yangon(Burma) and Its Surrounding Areas[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 463-466.
    [9]GU Guohua, WANG Wuxing, MENG Guojie, XU Yueren. Crustal Movements Before and After the Wenchuan Earthquake as Detected by GPS Observations[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1336-1339.
    [10]WU Yun, SUN Jianzhong, QIAO Xuejun, WANG Hui. Applications of GPS to Current Crust Movements and Monitoring Seismic Precursors[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S1): 79-82,136.
  • Cited by

    Periodical cited type(5)

    1. 郑勇,郭汝梦,刘德川. 川滇主要地震空区危险性的研究现状及思考. 中国科学:地球科学. 2024(11): 3375-3402 .
    2. Yong ZHENG,Rumeng GUO,Dechuan LIU. Present status and prospective on the seismic hazard studies of major seismic gaps in the Sichuan-Yunnan region. Science China Earth Sciences. 2024(11): 3339-3366 .
    3. 王鹏,刘静,刘小利,刘志军. GNSS在地表过程研究中的应用. 武汉大学学报(信息科学版). 2024(12): 2159-2180 .
    4. 许才军,贺克锋. 地震周期形变的大地测量研究进展和展望. 武汉大学学报(信息科学版). 2023(11): 1736-1755 .
    5. 王守文,季灵运,朱良玉,刘传金. 基于InSAR技术监测2021年青海玛多M_w7.4级地震同震形变场与断层滑动. 地球科学与环境学报. 2022(06): 1016-1026 .

    Other cited types(2)

Catalog

    Article views (1491) PDF downloads (205) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return