XU Yangyin, YANG Yuanxi, HE Haibo, LI Jinlong, TANG Bin, ZHANG Linfeng. Quality Analysis of the Range Measurement Signals of Test Satellites in BeiDou Global System[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1214-1221. DOI: 10.13203/j.whugis20160219
Citation: XU Yangyin, YANG Yuanxi, HE Haibo, LI Jinlong, TANG Bin, ZHANG Linfeng. Quality Analysis of the Range Measurement Signals of Test Satellites in BeiDou Global System[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1214-1221. DOI: 10.13203/j.whugis20160219

Quality Analysis of the Range Measurement Signals of Test Satellites in BeiDou Global System

Funds: 

The National Key R&D Program 2016YFB0501700

The National Key R&D Program 2016YFB0501701

the National Natural Science Foundation of China 41374019

the National Natural Science Foundation of China 41474015

More Information
  • Author Bio:

    XU Yangyin, PhD candidate, specializes in the theory and algorithm of GNSS real-time precise positioning. E-mail:xu_yangyin@163.com

  • Received Date: November 16, 2016
  • Published Date: August 04, 2018
  • Currently, there are five testing satellites of BeiDou Global Satellite Navigation System broadcasting new signals. Quality analysis of testing satellite observations is a significant content for the verification of the new signal system. Based on single station measurement of BeiDou testing satellites, the code minus phase combination (CC) and multipath combination (MP) are employed to analyze the code noise and multipath errors of civil signals and Bs signal of the test satellites. The result shows that the pseudorange measurement accuracy of inclined geosynchronous satellite orbit (IGSO) satellite is better than that of the medium earth orbit (MEO) satellite; B2a+b signal has the highest pseudorange measurement accuracy as well as the best anti-multipath performance, while the B1C signal performs the worst in both aspects; the pseudorange measurement accuracy of Bs signal is rela-tively poor, yet better than that of the B1C signal and a systematic error related to elevation exists in the code multipath series of Bs signal with its maximum value up to 0.5 meter.
  • [1]
    杨元喜.北斗卫星导航系统的进展、贡献与挑战[J].测绘学报, 2010, 39(1):1-6 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201001003.htm

    Yang Yuanxi. Progress, Contribution and Challenges of Compass/BeiDou Satellites Navigation System[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(1):1-6 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201001003.htm
    [2]
    杨元喜, 李金龙, 徐君毅, 等.中国北斗卫星系统对全球PNT用户的贡献[J].科学通报, 2011, 56(21):1734-1740 http://www.cnki.com.cn/Article/CJFDTotal-KXTB201121009.htm

    Yang Yuanxi, Li Jinlong, Xu Junyi, et al. Contribution of the COMPASS Satellite Navigation System to Global PNT Users[J]. Chinese Science Bulletin, 2011, 56(21):1734-1740 http://www.cnki.com.cn/Article/CJFDTotal-KXTB201121009.htm
    [3]
    Yang Yuanxi, Li Jinlong, Wang Aibing, et al. Preliminary Assessment of the Navigation and Positioning Performance of BeiDou Regional Navigation Satellite System[J]. Science China Earth Sciences, 2014, 57(1):144-152 doi: 10.1007/s11430-013-4769-0
    [4]
    Guo Shuren. Directions 2016:A New Stage for the Development of BeiDou[J]. GPS World, 2016, 7(10):56-62
    [5]
    Xiao Wei, Liu Wenxiang, Sun Guangfu. Modernization Milestone:BeiDou M2-S Initial Signal Analysis[J]. GPS Solutions, 2015, 3(1):42-49
    [6]
    Gao G, Chen A, Lo S, et al. Compass-M1 Broadcast Codes in E2, E5b, and E6 Frequency Bands[J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(4):599-612 doi: 10.1109/JSTSP.2009.2025635
    [7]
    程鹏飞, 李玮, 秘金钟.北斗导航卫星系统测距信号的精度分析[J].测绘学报, 2012, 41(5):690-695, 780 http://www.cqvip.com/QK/98178A/201501/663814077.html

    Cheng Pengfei, Li Wei, Bei Jinzhong. Precision Analysis of BeiDou Measurement Signals[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5):690-695, 780 http://www.cqvip.com/QK/98178A/201501/663814077.html
    [8]
    张小红, 丁乐乐.北斗二代观测值质量分析及随机模型精化[J].武汉大学学报·信息科学版, 2013, 38(7):832-836 http://ch.whu.edu.cn/CN/Y2013/V38/I7/832

    Zhang Xiaohong, Ding Lele. Quality Analysis of the Second Generation Compass Observables and Stochastic Model Refining[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7):832-836 http://ch.whu.edu.cn/CN/Y2013/V38/I7/832
    [9]
    Cameron A. New BeiDou TMBOC Signal Tracked Similar to Future GPS L1C Structure[J]. GPS World, 2015, 26(10):1-5
    [10]
    de Bakker P F, van der Marel H, Tiberius C C J M. Geometry-Free Undifferenced, Single and Double Differenced Analysis of Single Frequency GPS, EGNOS, and GIOVE-A/B Measurements[J]. GPS Solutions, 2009, 13(4):305-314 doi: 10.1007/s10291-009-0123-6
    [11]
    Tiberius C C J M, de Bakker P F, van der Marel H, et al. Geometry-Free Analysis of GIOVE-A/B E1-E5a, and GPS L1-L5 Measurements[C]. ION GNSS, Savannah, GA, 2009
    [12]
    de Bakker P F, Tiberius C C J M, van der Marel H, et al. Short and Zero Baseline Analysis of GPS L1 C/A, L5Q, GIOVE E1B, and E5aQ Signals[J]. GPS Solutions, 2012, 16(1):1-5 doi: 10.1007/s10291-010-0201-9
    [13]
    Alfanek O, Skone S, Lachapelle G. Evaluation of L2C Observations and Limitations[C]. ION GNSS 20th International Technical Meeting of the Satellites Division, Fort Worth, 2007
    [14]
    Hauschild A, Montenbruck O, Sleewaegen J M, et al. Characterization of Compass M-1 Signals[J]. GPS Solutions, 2012, 16(1):117-126 doi: 10.1007/s10291-011-0210-3
    [15]
    Zhang Xiaohong, He Xiyang, Liu Wanke. Characteristics of Systematic Errors in the BDS Hatch-Melbourne-Wübbena Combination and Its Influence on Wide-Lane Ambiguity Resolution[J]. GPS Solutions, 2016, 20(1):1-13 doi: 10.1007/s10291-014-0428-y
    [16]
    Simsky A, de Wilde W, Willems T, et al. First Field Experience with L5 Signals: DME Interfe-rence Reality Check[C]. 22nd International Meeting of the Satellite Division, Savannah, 2009
    [17]
    杨再秀, 黄智刚, 耿生群.基于副载波跟踪的BOC信号跟踪环路设计[J].北京航空航天大学学报, 2013, 37(2):245-248 http://www.cqvip.com/QK/90750X/201102/37228015.html

    Yang Zaixiu, Huang Zhigang, Geng Shengqun. Novel Tracking Loop of BOC Signal Based on Subcarrier Tracking[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 37(2):245-248 http://www.cqvip.com/QK/90750X/201102/37228015.html
    [18]
    Wanninger L, Beer S. BeiDou Satellite-Induced Code Pseudorange Variations:Diagnosis and Therapy[J]. GPS Solution, 2015, 19(4):639-648 doi: 10.1007/s10291-014-0423-3
  • Related Articles

    [1]LI Jun, ZHU Huizhong, LU Yangyang, XU Aigong. BDS Pseudorange Augmentation Positioning Based on Carrier Smoothing Pseudorange[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2187-2198. DOI: 10.13203/j.whugis20220150
    [2]LI Lan, ZHU Feng, LIU Wanke, ZHANG Xiaohong. GNSS Pseudorange Stochastic Model for Urban Classification Scenes and Its Positioning Performance[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220598
    [3]WANG Ya-wei, ZOU Xuan, YE Yuan-bin, FU Rui-nan, TANG Wei-ming, LI Zhi-yuan. Research on Multipath Error Mitigation Method Considering NLOS Signals[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220769
    [4]ZHANG Rui, XIONG Yongliang, LEI Fei. A Multipath Error Mitigation Method for GNSS Kinematic Single Epoch Positioning by Fusing Track Inspection Information[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 905-912. DOI: 10.13203/j.whugis20190268
    [5]ZOU Xuan, LI Zongnan, CHEN Liang, LI Min, TANG Weiming, SHI Chuang. Modeling BeiDou IGSO and MEO Satellites Code Pseudorange Variations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1661-1666. DOI: 10.13203/j.whugis20160275
    [6]GONG Xuewen, WANG Fuhong. Impact of Multipath Error and Noise of Space-Borne GPS Code Measurements on Real-Time Onboard Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1048-1055. DOI: 10.13203/j.whugis20160223
    [7]GAO Xiao, YANG Zhiqiang, KANG Junmei, WANG Jun. BDS GEO Satellites Multipath Detection Using Three-frequency Signal-to-Noise Measurements[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 213-218. DOI: 10.13203/j.whugis20150313
    [8]YANG Jianlei, JIN Tian, HUANG Zhigang, QIN Honglei, CUI Jihui. A Multipath Error Non-envelope Assessment Method for GNSS Signals[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 262-268. DOI: 10.13203/j.whugis20140073
    [9]CHEN Dezhong, YE Shirong, LIU Yanyan, LIU Zheng. Applied Analysis of GPS Multipath Errors Based on Observation Domain[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 147-151. DOI: 10.13203/j.whugis20120719
    [10]FENG Xin, WANG Hua, TAN Shusen. Multipath Performance Analysis for Navigation Signals in Different Pro-correlation Bandwidth and Correlator Spacing[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1191-1194.
  • Cited by

    Periodical cited type(18)

    1. 解雪峰,胡洪,高井祥. 北斗三号码观测值评估及定位精度分析. 合肥工业大学学报(自然科学版). 2023(01): 118-125 .
    2. 赵春梅,王磊,何正斌. 卫星激光测距站分级与GNSS卫星轨道精度校核. 测绘学报. 2023(03): 357-366 .
    3. 高扬,沙海,楚恒林,王梦丽. 北斗B1C、B2a信号非理想性分析及接收约束建议. 武汉大学学报(信息科学版). 2023(04): 587-592 .
    4. 王西龙,许小龙,赵齐乐. 北斗三号系统信号质量分析及轨道精度验证. 武汉大学学报(信息科学版). 2023(04): 611-619 .
    5. 卢立果,吴汤婷. 全球导航卫星系统数据预处理软件设计及实验教学应用. 实验室研究与探索. 2023(01): 190-194 .
    6. Xiaoguo Guan,Hongzhou Chai,Guorui Xiao,Zhenqiang Du,Wenlong Qi,Xueping Wang. Signal quality analysis and quality check of BDS3 Precise Point Positioning in the Arctic Ocean. Acta Oceanologica Sinica. 2022(02): 166-179 .
    7. 李剑,宋文明,崔恒乐,张自潘,李文鹏. 北斗三号与GPS组合实时动态精密单点定位精度分析. 工程勘察. 2022(09): 66-71 .
    8. 李增科,陈昭冰,刘赞,高井祥,赵龙,徐磊. 融合BDS-3新信号的GNSS动态PPP模糊度固定. 中国矿业大学学报. 2022(06): 1222-1231 .
    9. 宗云婷,周定杰,汪翼瑞,陈世杰. 基于卫星激光测距数据的北斗精密星历产品质量评估. 测绘技术装备. 2022(04): 1-5 .
    10. 王朝辉,马下平,严丽,鲁铁定,赵庆志. 北斗三号全球卫星导航系统的广播星历精度评估. 测绘通报. 2021(01): 59-65+98 .
    11. 戚政武,陈建勋,汤景升,程实,蔡炜. 旋转编码位移测量技术在电梯检验中的应用. 西部特种设备. 2021(06): 38-45+54 .
    12. 何义磊. 北斗三号最简系统卫星信号质量分析. 武汉大学学报(信息科学版). 2020(03): 394-402 .
    13. 彭友志,田野,张炜程,彭敖,洪学敏. 5G/GNSS融合系统定位精度仿真分析. 厦门大学学报(自然科学版). 2020(01): 101-107 .
    14. 代阳. Helmert方差分量估计在GPS/GLONASS/BDS组合单点定位中的应用. 科技创新与生产力. 2020(03): 43-47 .
    15. 关小果,柴洪洲,潘宗鹏,刘春鹤,杜祯强. 海洋环境中北斗精密单点定位精度及性能分析. 测绘工程. 2020(02): 6-11 .
    16. 申洋赫,张晓松,刘彬,闫金栋. 一种导航卫星信号的相关特性快速评估方法. 航天器工程. 2020(02): 127-133 .
    17. 朱永兴,谭述森,任夏,贾小林. GNSS全球广播电离层模型精度分析. 武汉大学学报(信息科学版). 2020(05): 768-775 .
    18. 高猛,徐爱功,祝会忠,徐宗秋,徐辛超. 一种北斗卫星导航系统三频非差网络RTK方法. 武汉大学学报(信息科学版). 2020(07): 996-1001+1014 .

    Other cited types(16)

Catalog

    Article views (1722) PDF downloads (361) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return