ZHAO Danning, LEI Yu. Long-Term Characteristics Analysis of GLONASS In-Flight Clocks[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 895-904. DOI: 10.13203/j.whugis20190233
Citation: ZHAO Danning, LEI Yu. Long-Term Characteristics Analysis of GLONASS In-Flight Clocks[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 895-904. DOI: 10.13203/j.whugis20190233

Long-Term Characteristics Analysis of GLONASS In-Flight Clocks

Funds: 

The National Natural Science Foundation of China 11503031

More Information
  • Author Bio:

    ZHAO Danning, PhD, lecture, specializes in the autonomous satellite navigation. E-mail: zhaodanning31@163.com

  • Corresponding author:

    LEI Yu, PhD, lecture. E-mail: leiyu@xupt.edu.cn

  • Received Date: August 01, 2020
  • Published Date: June 04, 2021
  •   Objectives  In October 2011 the Russian GLONASS(global navigation satellite system) orbital constellation of 24 satellites is restored, enabling global coverage for positioning, navigation and timing for civil users once again. It plays key roles in navigation system performance evaluation, integrity monitoring, determination and prediction of satellite clock correction. To analyze the time-frequency characteristics of GLONASS in-flight satellite clocks, GLONASS satellites are equipped with cesium clocks, which are different from GPS, Galileo and BDS(BeiDou navigation satellite system) satellites, so GLONASS in-flight Cesium clock may have quite different time-frequency characteristics. However, analysis and evaluation are rarely reported about GLONASS satellite clocks.
      Methods  In order to estimate the behavior and state of GLONASS in-flight satellite clocks, the long-term characterization of the GLONASS in-orbit Cesium clocks is carried out in terms of the long-term variations of the five indices, namely clock phase, frequency, frequency drift, frequency stability and clock model noise. In view of the availability and accuracy of GLONASS satellite clock data, the precise GLONASS satellite clock products from Jan. 1, 2016 to May 11, 2019 with 5-minute interval released by the Russian GLONASS Information and Analysis Center for Positioning, Navigation and Timing are used as data base to derive the clock phase, frequency, frequency drift and clock model noise from the quadratic polynomial model, as well as calculate the clock frequency stability at the short interval according to the classical Hadamard deviation.
      Results  It is clearly shown that the phase and frequency of the GLONASS on-board Cesium clocks are very stable. The average values of the model noise and frequency drift of the GLONASS in-orbit clocks are 0.7 ns and 5.94×10-15/d, respectively. The results demonstrate that GLONASS Cesium clocks have good physical characteristics.The frequency stability of the GLONASS satellite clocks in orbit is at the 10-13 level at short interval, and there is noticeable relationship between the frequency stability and clock model noise, which will be needed to clarify further.
      Conclusions  The results show that the physical characteristics of new satellite clocks are better than that of older clocks, and the clock model noise are also substantially lower.
  • [1]
    杨元喜, 许扬胤, 李金龙, 等. 北斗三号系统进展及性能预测——试验验证数据分析[J]. 中国科学: 地球科学, 2018, 48(5): 584-594 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201805005.htm

    Yang Yuanxi, Xu Yangyin, Li Jinlong, et al. Progress and Performance Evaluation of BeiDou Navigation Satellite System[J]. Science China Earth Sciences, 2018, 48(5): 584-594 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201805005.htm
    [2]
    黄观文. GNSS星载原子钟质量评价及精密钟差算法研究[D]. 西安: 长安大学, 2012

    Huang Guanwen. Research on Algorithms of Precise Clock Offset and Quality Evaluation of GNSS Satellite Clock[D]. Xi'an: Chang' an Univsersity, 2012
    [3]
    李作虎. 卫星导航系统性能监测及评估方法研究[D]. 郑州: 信息工程大学, 2012

    Li Zuohu. Research on Monitoring and Assessment of Satellite Navigation System Performance[D]. Zhengzhou: Information Engineering University, 2012
    [4]
    张清华, 隋立芬, 贾小林. 应用Jones-Tryon Kalman滤波器对在轨GPS Rb钟进行状态监测[J]. 武汉大学学报·信息科学版, 2012, 37(4): 436-440 http://ch.whu.edu.cn/article/id/170

    Zhang Qinghua, Sui Lifen, Jia Xiaolin. Monitor State of GPS Rb Clock Using Jones-Tryon Kalman Filter[J]. Geomatics and Information Science of Wuhan University, 2012, 37(4): 436-440 http://ch.whu.edu.cn/article/id/170
    [5]
    Huang Guanwen, Cui Bolin, Zhang Qin, et al. An Improved Predicted Model for BDS Ultra-Rapid Satellite Clock Offsets[J]. Remote Sensing, 2018, 10 (1): 60-68 http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2018RemS...10...60H&link_type=EJOURNAL&db_key=PHY&high=
    [6]
    Huang G, Zhang Q, Li H, et al. Quality Variations of GPS Satellite Clocks On-orbit Using IGS Clock Products[J]. Advances in Space Research, 2013, 51(6): 978-987 doi: 10.1016/j.asr.2012.09.041
    [7]
    Steigenberger P, Hugentobler U, Loyer S, et al. Galileo Orbit and Clock Quality of the IGS Multi-GNSS Experiment[J]. Advances in Space Research, 2015, 55(1): 269-281 doi: 10.1016/j.asr.2014.06.030
    [8]
    黄观文, 余杭, 郭海荣, 等. 北斗在轨卫星钟中长期钟差特性分析[J]. 武汉大学学报·信息科学版, 2017, 42(7): 982-988 doi: 10.13203/j.whugis20140827

    Huang Guanwen, Yu Hang, Guo Hairong, et al. Analysis of the Mid-Long Term Characterization for BDS On-orbit Satellite Clocks[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 982-988 doi: 10.13203/j.whugis20140827
    [9]
    Wu Ziqian, Zhou Shanshi, Hu Xiaogong, et al. Performance of the BDS3 Experimental Satellite Passive Hydrogen Maser[J]. GPS Solutions, 2018, 22(2): 42-54 doi: 10.1007/s10291-018-0705-2
    [10]
    Huang Guanwen, Cui Bolin, Xu Yan, et al. Characteristics and Performance Evaluation of Galileo On-orbit Satellites Atomic Clocks During 2014—2017[J]. Advances in Space Research, 2019, 9(1): 2 899-2 911 http://www.sciencedirect.com/science/article/pii/S0273117718300802
    [11]
    Fu Wenju, Huang Guanwen, Zhang Qin, et al. The Analysis of the Characterization for GLONASS and GPS On-board Satellite Clocks[C]// China Satellite Navigation Conference (CSNC) 2013 Proceedings, Wuhan, China, 2013: 549-566
    [12]
    Griggs E, Kursinski E R, Akos D. An Investigation of GNSS Atomic Clock Behavior at Short Time Intervals[J]. GPS Solutions, 2014, 18(3): 443-452 doi: 10.1007/s10291-013-0343-7
    [13]
    李明哲, 张绍成, 胡友健, 等. 基于高频观测值得不同GNSS卫星钟稳定性分析[J]. 武汉大学学报·信息科学版, 2018, 43(10): 1 490-1 503 doi: 10.13203/j.whugis20160537

    Li Mingzhe, Zhao Shaocheng, Hu Youjian, et al. Comparison of GNSS Satellite Clock Stability Based on High Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1 490-1 503 doi: 10.13203/j.whugis20160537
    [14]
    刘帅, 贾小林, 孙大伟. GNSS星载原子钟性能评估[J]. 武汉大学学报·信息科学版, 2017, 42(2): 276-284 doi: 10.13203/j.whugis20150344

    Liu Shuai, Jia Xiaolin, Sun Dawei. Performance Evaluation of GNSS On-board Atomic Clocks[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 276-284 doi: 10.13203/j.whugis20150344
  • Related Articles

    [1]GUO Wenfei, ZHU Mengmeng, GU Shengfeng, ZUO Hongming, CHEN Jinxin. GNSS Precise Time-Frequency Receiver Clock Steering Model and Parameter Design Method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1126-1133. DOI: 10.13203/j.whugis20220458
    [2]SUN Leyuan, YANG Jun, GUO Xiye, HUANG Wende. Frequency Performance Evaluation of BeiDou-3 Satellite Atomic Clocks[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20200486
    [3]WU Yiwei, YANG Bin, XIAO Shenghong, WANG Maolei. Atomic Clock Models and Frequency Stability Analyses[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1226-1232. DOI: 10.13203/j.whugis20180058
    [4]AN Xiangdong, CHEN Hua, JIANG Weiping, XIAO Yugang, ZHAO Wen. GLONASS Ambiguity Resolution Method Based on Long Baselines and Experimental Analysis[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 690-698. DOI: 10.13203/j.whugis20170091
    [5]LI Mingzhe, ZHANG Shaocheng, HU Youjian, HOU Weizhen. Comparison of GNSS Satellite Clock Stability Based on High Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1490-1495, 1503. DOI: 10.13203/j.whugis20160537
    [6]WANG Ning, WANG Yupu, LI Linyang, ZHAI Shufeng, LV Zhiping. Stability Analysis of the Space-borne Atomic Clock Frequency for BDS[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1256-1263. DOI: 10.13203/j.whugis20150806
    [7]LIU Zhiqiang, YUE Dongjie, WANG Hu, ZHENG Dehua. An Approach for Real-Time GPS/GLONASS Satellite Clock Estimation with GLONASS Code Inter-Frequency Biases Compensation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1209-1215. DOI: 10.13203/j.whugis20150542
    [8]HUANG Guanwen, YU Hang, GUO Hairong, ZHANG Juqing, FU Wenju, TIAN Jie. Analysis of the Mid-long Term Characterization for BDS On-orbit Satellite Clocks[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 982-988. DOI: 10.13203/j.whugis20140827
    [9]MAO Yue, CHEN Jianpeng, DAI Wei, JIA Xiaolin. Analysis of On-board Atomic Clock Stability Influences[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1182-1186.
    [10]GUO Hairong, YANG Yuanxi. Analyses of Main Error Sources on Time-Domain Frequency Stability for Atomic Clocks of Navigation Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 218-221.
  • Cited by

    Periodical cited type(10)

    1. 黄观文,曹钰,谭粤,谢威. GNSS星载原子钟在轨性能评估技术进展. 测绘地理信息. 2024(01): 20-28 .
    2. 蒋春华,朱美珍,薛慧杰,刘广盛. 基于长短时记忆神经网络的Multi-GNSS卫星钟差建模预报. 大地测量与地球动力学. 2024(03): 257-262 .
    3. 艾孝军,孙大伟,贾小林,郭栋,彭腾. GNSS星载原子钟性能评估与噪声分析模型算法研究. 无线电工程. 2023(05): 1041-1051 .
    4. 李方能,梁益丰,许江宁,吴苗. BDS/GPS新型铷原子钟长期特性分析. 中国惯性技术学报. 2023(05): 452-461 .
    5. 张润哲,刘雪娇,王全喜. 基于方位导引的无人僚机着舰进近引导技术研究. 现代导航. 2023(06): 416-421 .
    6. 龚明杰. GPS与GLONASS多频组合伪距单点定位精度分析. 测绘与空间地理信息. 2022(02): 115-117+122 .
    7. 樊礼谦,焦文海,蔡洪亮,周巍,徐颖,周舒涵. 北斗三号卫星钟长期稳定性分析. 导航定位学报. 2022(04): 11-19 .
    8. 李特,张为成,王建敏,李秀海. 基于不同评价指标的北斗星载原子钟特性分析. 黑龙江工程学院学报. 2022(04): 1-7 .
    9. 伏军胜,贾小林,刘家龙,许瑾,贺延伟,张奋. BDS-3卫星与其他GNSS系统卫星原子钟性能分析. 真空与低温. 2022(05): 615-622 .
    10. 齐艳丽. 北斗星载原子钟频率稳定度评估. 科技视界. 2022(29): 83-85 .

    Other cited types(11)

Catalog

    Article views (975) PDF downloads (86) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return