GAO Wang, GAO Chengfa, PAN Shuguo, SHANG Rui, DENG Jiadong. Fast Ambiguity Resolution Between GPS/GLONASS/BDS Combined Long-range Base Stations Based on Partial-fixing Strategy[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 558-562. DOI: 10.13203/j.whugis20140945
Citation: GAO Wang, GAO Chengfa, PAN Shuguo, SHANG Rui, DENG Jiadong. Fast Ambiguity Resolution Between GPS/GLONASS/BDS Combined Long-range Base Stations Based on Partial-fixing Strategy[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 558-562. DOI: 10.13203/j.whugis20140945

Fast Ambiguity Resolution Between GPS/GLONASS/BDS Combined Long-range Base Stations Based on Partial-fixing Strategy

Funds: 

The National Natural Science Foundation of China 41574026

Six Talent Peaks Project in Jiangsu Province 2015-WLW-002

the Fundamental Research Funds for the Central Universities of China KYLX15_0159

the Scientific Research Foundation of Graduated School of Southeast University YBJJ1635

More Information
  • Author Bio:

    GAO Wang, PhD candidate, specializes in multi-frequency and multi-system GNSS fast precise positioning. E-mail: gaow@seu.edu.cn

  • Received Date: July 24, 2015
  • Published Date: April 04, 2017
  • Fast and correct ambiguity resolution (AR) between long-range base stations is the precondition of realizing high-precision Network Real-time Kinematic (NRTK) positioning. For long baselines in GPS, GLONASS and BDS combined systems, it is always difficult to fix all the ambiguities rapidly and correctly due to the dimensions of ambiguities increased greatly with the influence of measurement noise, residual atmosphere delay and etc., which will be especially difficult for the ambiguities from low-elevation satellites. This paper proposed a fast partial ambiguities resolution (PAR) method with ambiguity subset adaptively selected based on the successively increased elevations for long baselines in GPS, GLONASS and BDS combined NRTK. Satellite cut-off elevation, ambiguity success rate and ratio are treated as major parameters to select the ambiguity subsets with ambiguity subset adaptively selected based on the successively increased elevations, and so that to realize fast and correct ambiguity resolution. The real measured long-baseline data which contain GPS, GLONASS and BDS observations are used in the experiments, and the results show that the PAR strategy can effectively avoid the influence of low-elevation satellites on AR fixing, which increase ambiguity success rate and Ratio significantly and of course shorten the required time of correct AR for long baselines in NRTK.
  • [1]
    Yang Y, Li J, Xu J, et al. Contribution of the Compass Satellite Navigation System to Global PNT Users[J].Chinese Science Bulletin, 2011, 56(26):2813-2819 doi: 10.1007/s11434-011-4627-4
    [2]
    Wanninger L.Virtual Reference Stations (VRS)[J]. GPS Solutions, 2003, 7(2):143-144 doi: 10.1007/s10291-003-0060-8
    [3]
    Li B, Teunissen P J G. GNSS Antenna Array-aided CORS Ambiguity Resolution[J].Journal of Geodesy, 2014, 88(4):363-376 doi: 10.1007/s00190-013-0688-2
    [4]
    Teunissen P J G, Joosten P, Tiberius C.Geometry-free Ambiguity Success Rates in Case of Partial Fixing[C]. ION-NTM 1999, San Diego, CA, 1999
    [5]
    阳仁贵, 欧吉坤, 袁运斌. 部分搜索法提高 GPS 相位模糊度解算的效率和成功率[J]. 武汉大学学报·信息科学版, 2007, 32(2):160-163 http://ch.whu.edu.cn/CN/abstract/abstract1824.shtml

    Yang Rengui, Ou Jikun, Yuan Yunbin. Facilitating Efficiency and Success Rate of Resolving GPS Phase Ambiguity with Parts Search Method[J].Geomatics and Information Science of Wuhan University, 2007, 32(2):160-163 http://ch.whu.edu.cn/CN/abstract/abstract1824.shtml
    [6]
    Wang J, Feng Y. Reliability of Partial Ambiguity Fixing with Multiple GNSS Constellations[J].Journal of Geodesy, 2013, 87(1):1-14 doi: 10.1007/s00190-012-0573-4
    [7]
    Li B, Shen Y, Feng Y,et al. GNSS Ambiguity Resolution with Controllable Failure Rate for Long Baseline Network RTK[J]. Journal of Geodesy, 2014, 88(2):99-112 doi: 10.1007/s00190-013-0670-z
    [8]
    鄢子平,丁乐乐,黄恩兴,等. 网络RTK参考站间模糊度固定新方法[J]. 武汉大学学报·信息科学版, 2013, 38(3):295-298 http://ch.whu.edu.cn/CN/abstract/abstract21.shtml

    Yan Ziping, Ding Lele, Huang Enxing, et al. A New Method of Ambiguity Resolution in Network RTK Between Reference Stations[J].Geomatics and Information Science of Wuhan University, 2013, 38(3):295-298 http://ch.whu.edu.cn/CN/abstract/abstract21.shtml
    [9]
    李鹤峰, 党亚民, 秘金钟, 等. BDS 与 GPS, GLONASS 多模融合导航定位时空统一[J]. 大地测量与地球动力学, 2013, 33(4):73-78

    Li Hefeng, Dang Yamin,Bei Jinzhong, et al. Research on Spatio Tempora Unification of BDS/GPS/GLONASS Multi-Mode Fusion Navigation and Positioning[J]. Journal of Geodesy and Geodynamics, 2013, 33(4):73-78
    [10]
    唐卫明, 刘经南, 施闯, 等. 三步法确定网络 RTK 基准站双差模糊度[J]. 武汉大学学报·信息科学版, 2007, 32(4):305-308 http://ch.whu.edu.cn/CN/abstract/abstract1875.shtml

    Tang Weiming, Liu Jingnan, Shi Chuang, et al. Three Steps Method to Determine Double Difference Ambiguities Resolution of Network RTK Reference Station[J]. Geomatics and Information Science of Wuhan University, 2007, 32(4):305-308 http://ch.whu.edu.cn/CN/abstract/abstract1875.shtml
    [11]
    Wang J. An Approach to GLONASS Ambiguity Resolution[J].Journal of Geodesy, 2000, 74(5):421-430 doi: 10.1007/s001900000096
    [12]
    Teunissen P J G. Success Probability of Integer GPS Ambiguity Rounding and Bootstrapping[J].Journal of Geodesy, 1998, 72(10):606-612 doi: 10.1007/s001900050199
    [13]
    Verhagen S, Teunissen P J G. The Ratio Test for Future GNSS Ambiguity Resolution[J].GPS Solutions, 2013, 17(4):535-548 doi: 10.1007/s10291-012-0299-z
  • Related Articles

    [1]WANG Chunyan, LIU Jiaxin, XU Aigong, WANG Yu, SUI Xin. A New Method of Fuzzy Supervised Classification of High Resolution Remote Sensing Image[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 922-929. DOI: 10.13203/j.whugis20150726
    [2]ZHENG Zhaobao, PAN Li, ZHENG Hong. Application of Image Correlation Degree to Image Fuzzy Classification[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 574-577. DOI: 10.13203/j.whugis20140736
    [3]ZHENG Zhaobao, PAN Li, ZHENG Hong. Image Segmentation Based on Fuzzy Logic Methods[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 397-400. DOI: 10.13203/j.whugis20120209
    [4]XU Lamei, YI Chunju. Application of Grey System Theory in Image Edge Detection[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 929-931.
    [5]ZHONG Yanfei, ZHANG Liangpei, LI Pingxiang. Fuzzy Cluster Validation for Remote Sensing Image Classification[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 391-394.
    [6]HU Peng, FU Zhongliang, CHEN Nan. Image Edge Detection Based on Gray System Theory[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 411-414.
    [7]HE Jianhua, LIU Yaolin. Formalized Description of Indeterminate Geographic Object Based on Fuzzy Degree[J]. Geomatics and Information Science of Wuhan University, 2005, 30(4): 341-344.
    [8]ZHANG Huimin, HAN Liqun, DUAN Zhenggang. Tobacco Grading Based on Image Features[J]. Geomatics and Information Science of Wuhan University, 2003, 28(3): 359-362.
    [9]Huang Guilan, Zheng Zhaobao. The Application of Fuzzy Asesmble Analysis in the Classification of Image Texture Based on Fractal Geometry[J]. Geomatics and Information Science of Wuhan University, 1995, 20(2): 112-117.
    [10]Shen Bangxing. Fuzzy Comprehensive Evaluation of the Experimental Design for the Multi-target[J]. Geomatics and Information Science of Wuhan University, 1989, 14(1): 57-65.
  • Cited by

    Periodical cited type(1)

    1. 郑肇葆, 郑宏. 利用数据引力进行图像分类. 武汉大学学报(信息科学版). 2017(11): 1604-1607 .

    Other cited types(0)

Catalog

    Article views (1535) PDF downloads (564) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return