XIONG Hanjiang, GUO Sheng, ZHENG Xianwei, ZHOU Yan. Indoor Pedestrian Mobile Activity Recognition and Trajectory Tracking[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1696-1703. DOI: 10.13203/j.whugis20170066
Citation: XIONG Hanjiang, GUO Sheng, ZHENG Xianwei, ZHOU Yan. Indoor Pedestrian Mobile Activity Recognition and Trajectory Tracking[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1696-1703. DOI: 10.13203/j.whugis20170066

Indoor Pedestrian Mobile Activity Recognition and Trajectory Tracking

Funds: 

The National Key Research and Development Program of China 2016YFB0502203

Mapping Geographic Information Industry Research Projects of Public Interest Industry 201512009

the Special Research Funding of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing 

More Information
  • Author Bio:

    XIONG Hanjiang, PhD, professor, specializes in 3D GIS and indoor GIS.E-mail:xionghanjiang@163.com

  • Corresponding author:

    ZHENG Xianwei, PhD.E-mail:zhengxw@whu.edu.cn

  • Received Date: September 06, 2017
  • Published Date: November 04, 2018
  • As the basis of indoor location services, indoor localization technology has received more and more attention in recent years. Aiming at the problems of high cost, limited precision and insufficient efficiency in existing indoor positioning technologies, pedestrian dead reckoning (PDR), human acti-vity recognition (HAR) and landmarks are combined to obtain more accurate pedestrian indoor localization. PDR is used to estimate the user's location, and the cumulative error of PDR is reduced by landmarks, which are sensed by HAR. In addition, to solve the initial position determination problem, a hidden Markov model that considers the characteristics of the indoor environment is applied to match the continuous trajectory. The experimental results show that the proposed method has a good performance in activity recognition and positioning accuracy, and can track the user's trajectory efficiently.
  • [1]
    Deng Z, Wang G, Hu Y, et al. Carrying Position Independent User Heading Estimation for Indoor Pedestrian Navigation with Smartphones[J]. Sensors, 2016, 16(5):677-1-677-22 doi: 10.3390/s16050677
    [2]
    Gezici S, Tian Z, Giannakis G B, et al. Localization via Ultra-Wideband Radios:A Look at Positioning Aspects for Future Sensor Networks[J]. IEEE Signal Processing Magazine, 2005, 22(4):70-84 https://ieeexplore.ieee.org/abstract/document/1458289
    [3]
    Thrun S. Probabilistic Robotics[J]. Communications of the ACM, 2002, 45(3):52-57 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027086507/
    [4]
    Zhu W, Cao J, Xu Y, et al. Fault-Tolerant RFID Reader Localization Based on Passive RFID Tags[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(8):2065-2076 doi: 10.1109/TPDS.2013.217
    [5]
    Deng Z, Xu Y, Ma L. Indoor Positioning via Nonlinear Discriminative Feature Extraction in Wireless Local Area Network[J]. Computer Communications, 2012, 35(6):738-747 doi: 10.1016/j.comcom.2011.12.011
    [6]
    Incel O D, Kose M, Ersoy C. A Review and Taxo-nomy of Activity Recognition on Mobile Phones[J]. Bio Nano Science, 2013, 3(2):145-171 http://dl.acm.org/citation.cfm?doid=1964897.1964918
    [7]
    Klasnja P, Pratt W. Healthcare in the Pocket:Mapping the Space of Mobile-Phone Health Interventions[J]. Journal of Biomedical Informatics, 2012, 45(1):184-198 doi: 10.1016/j.jbi.2011.08.017
    [8]
    Yang Z, Wu C, Zhou Z, et al. Mobility Increases Localizability:A Survey on Wireless Indoor Localization Using Inertial Sensors[J]. ACM Computing Surveys (CSUR), 2015, 47(3):1-34 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0235400951/
    [9]
    石高涛, 王伯远, 吴斌.基于WiFi与移动智能终端的室内定位方法综述[J].计算机工程, 2015(9):39-44 doi: 10.3969/j.issn.1000-3428.2015.09.007

    Shi Gaotao, Wang Boyuan, Wu Bin. Overview of Indoor Localization Method Based on WiFi and Mobile Smart Terminal[J]. Computer Engineering, 2015(9):39-44 doi: 10.3969/j.issn.1000-3428.2015.09.007
    [10]
    陈国良, 张言哲, 汪云甲, 等. WiFi-PDR室内组合定位的无迹卡尔曼滤波算法[J].测绘学报, 2015, 44(12):1314-1321 http://d.old.wanfangdata.com.cn/Periodical/chxb201512003

    Chen Guoliang, Zhang Yanzhe, Wang Yunjia, et al. Unscented Kalman Filter Algorithm for WiFi-PDR Integrated Indoor Positioning[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(12):1314-1321 http://d.old.wanfangdata.com.cn/Periodical/chxb201512003
    [11]
    Leppäkoski H, Collin J, Takala J. Pedestrian Navigation Based on Inertial Sensors, Indoor Map, and WLAN Signals[J]. Journal of Signal Processing Systems, 2013, 71(3):287-296 doi: 10.1007/s11265-012-0711-5
    [12]
    Li F, Zhao C, Ding G, et al. A Reliable and Accurate Indoor Localization Method Using Phone Inertial Sensors[C]. The 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, USA, 2012
    [13]
    Xiao Z, Wen H, Markham A, et al. Lightweight Map Matching for Indoor Localization Using Conditional Random Fields[C]. The 13th International Symposium on Information Processing in Sensor Networks, Berlin, Germany, 2014
    [14]
    宋镖, 程磊, 周明达, 等.基于惯导辅助地磁的手机室内定位系统设计[J].传感技术学报, 2015, 28(8):1249-1254 doi: 10.3969/j.issn.1004-1699.2015.08.025

    Song Biao, Cheng Lei, Zhou Mingda, et al.The Design of Cellphone Indoor Positioning System Based Magnetic Assisted Inertial Navigation Technology[J]. Chinese Journal of Sensors and Actuators, 2015, 28(8):1249-1254 doi: 10.3969/j.issn.1004-1699.2015.08.025
    [15]
    马明, 宋千, 李杨寰, 等.基于地磁辅助的室内行人定位航向校正方法[J].电子与信息学报, 2017, 39(3):647-653 http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201703020

    Ma Ming, Song Qian, Li Yanghuan, et al. Magnetic-Aided Heading Error Calibration Approach for Indoor Pedestrian Positioning[J].Journal of Electronics & Information Technology, 2017, 39(3):647-653 http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201703020
    [16]
    Wang H, Sen S, Elgohary A, et al. No Need to War-Drive: Unsupervised Indoor Localization[C]. The 10th International Conference on Mobile Systems, Applications and Services, Ambleside, The United Kingdom, 2012
    [17]
    周宝定, 李清泉, 毛庆洲, 等.用户行为感知辅助的室内行人定位[J].武汉大学学报·信息科学版, 2014, 39(6):719-723 http://ch.whu.edu.cn/CN/abstract/abstract3006.shtml

    Zhou Baoding, Li Qingquan, Mao Qingzhou, et al. User Activity Awareness Assisted Indoor Pedestrian Localization[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6):719-723 http://ch.whu.edu.cn/CN/abstract/abstract3006.shtml
    [18]
    Chen Z, Zou H, Jiang H, et al. Fusion of WiFi, Smartphone Sensors and Landmarks Using the Kalman Filter for Indoor Localization[J]. Sensors, 2015, 15(1):715-732 doi: 10.3390/s150100715
    [19]
    Constandache I, Choudhury R R, Rhee I. Towards Mobile Phone Localization Without War-Driving[C]. The 29th Conference on Computer Communications, San Diego, USA, 2010
    [20]
    Zhou B, Li Q, Mao Q, et al. ALIMC:Activity Landmark-Based Indoor Mapping via Crowdsour-cing[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5):2774-2785 doi: 10.1109/TITS.2015.2423326
    [21]
    Constandache I, Bao X, Azizyan M, et al. Did You See Bob?: Human Localization Using Mobile Phones[C]. The 16th Annual International Confe-rence on Mobile Computing and Networking, Chicago, USA, 2010
    [22]
    Jun J, Gu Y, Cheng L, et al. Social-Loc: Improving Indoor Localization with Social Sensing[C]. The 11th ACM Conference on Embedded Networked Sensor Systems, Roma, Italy, 2013
    [23]
    Azizyan M, Constandache I, Choudhury R R. Surround-Sense: Mobile Phone Localization via Ambience Fingerprinting[C]. The 15th Annual International Conference on Mobile Computing and Networking, Beijing, China, 2009
    [24]
    Sun Z, Mao X, Tian W, et al. Activity Classification and Dead Reckoning for Pedestrian Navigation with Wearable Sensors[J]. Measurement Science and Technology, 2009, 20(1):015203-1-015203-10 doi: 10.1088/0957-0233/20/1/015203
    [25]
    Kappi J, Syrjarinne J, Saarinen J. MEMS-IMU Based Pedestrian Navigator for Handheld Devices[C]. The 14th International Technical Meeting of the Satellite Division of the Institute of Navigation, Salt Lake City, USA, 2001
    [26]
    Gusenbauer D, Isert C, Krösche J. Self-contained Indoor Positioning on Off-the-Shelf Mobile Devices[C]. The 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Zurich, Switzerland, 2010
    [27]
    Kang W, Nam S, Han Y, et al. Improved Heading Estimation for Smartphone-Based Indoor Positio-ning Systems[C]. The 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Sydney, Australia, 2012
    [28]
    Kang W, Han Y. SmartPDR:Smartphone-Based Pedestrian Dead Reckoning for Indoor Localization[J]. IEEE Sensors Journal, 2015, 15(5):2906-2916 doi: 10.1109/JSEN.2014.2382568
    [29]
    Shoaib M, Bosch S, Incel O, et al. A Survey of Online Activity Recognition Using Mobile Phones[J]. Sensors, 2015, 15(1):2059-2085 doi: 10.3390/s150102059
    [30]
    Rai A, Chintalapudi K K, Padmanabhan V N, et al. Zee: Zero-Effort Crowdsourcing for Indoor Localization[C]. The 18th Annual International Conference on Mobile Computing and Networking, Istanbul, Turkey, 2012
  • Related Articles

    [1]HUANG Yuanxian, ZHOU Jian, HUANG Qi, LI Bijun, WANG Lanlan, ZHU Jialin. Camera-LiDAR Fusion for Object Detection,Tracking and Prediction[J]. Geomatics and Information Science of Wuhan University, 2024, 49(6): 945-951. DOI: 10.13203/j.whugis20210614
    [2]ZHANG Yongze, DA Feipeng. A Multi-object Tracking Method Based on Dilatation Region Matching and Adaptive Trajectory Management Strategy[J]. Geomatics and Information Science of Wuhan University, 2024, 49(4): 572-581. DOI: 10.13203/j.whugis20230359
    [3]CHEN Ruizhi, GUO Guangyi, CHEN Liang, NIU Xiaoguang. Application Status, Development and Future Trend of High-Precision Indoor Navigation and Tracking[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1591-1600. DOI: 10.13203/j.whugis20230212
    [4]WANG Peixiao, WU Sheng, ZHANG Hengcai, LU Feng, WANG Hong'en. A Method for Identifying Spatial and Temporal Aggregation Area of Indoor Crowd[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 790-798. DOI: 10.13203/j.whugis20190228
    [5]LUO Qiong, SHU Hong, XU Yajin, LIU Wen. Citizen Commuting Analysis Using Mobile Trajectory Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 718-725. DOI: 10.13203/j.whugis20200025
    [6]ZHANG Xing, LIU Tao, SUN Longpei, LI Qingquan, FANG Zhixiang. A Visual-Inertial Collaborative Indoor Localization Method for Multiple Moving Pedestrian Targets[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 672-680. DOI: 10.13203/j.whugis20200454
    [7]ZHAO Zhiyuan, YIN Ling, FANG Zhixiang, SHAW Shihlung, YANG Xiping. Impacts of Temporal Sampling Intervals on Stay Detection and Movement Network Construction in Trajectory Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1152-1158. DOI: 10.13203/j.whugis20160303
    [8]LIU Xianpeng, ZHANG Lihua, WANG Tao, CAO Hongbo. TERPM Locating Algorithm Based on Trajectory Tracking[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 219-226. DOI: 10.13203/j.whugis20160106
    [9]ZHOU Baoding, LI Qingquan, MAO Qingzhou, ZHANG Xing. User Activity Awareness Assisted Indoor Pedestrian Localization[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 719-723. DOI: 10.13203/j.whugis20140100
    [10]YANG Yubin, LIN Hui. Automatic Detecting and Tracking Space Debris Objects Using Active Contours from Astronomical Images[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2): 209-214.
  • Cited by

    Periodical cited type(10)

    1. 张梦烁,刘莎,暴颖慧. 基于Wi-Fi定位技术的建筑使用者动态信息研究. 科技与创新. 2024(13): 68-71 .
    2. 李静,王庆,王胜利,许九靖. 改进FSM步态检测的行人航位推算方法. 大地测量与地球动力学. 2023(02): 164-167+202 .
    3. 毕京学,甄杰,姚国标,桑文刚,宁一鹏,郭秋英. 面向智能手机的改进有限状态机步态探测算法. 武汉大学学报(信息科学版). 2023(02): 232-238 .
    4. 陈观鸿,梁炼. 智慧家居中基于计算机数据感知的老人行为识别技术. 微型电脑应用. 2023(05): 15-17 .
    5. 谢成. 基于无人智能化的二级仓库低值耗材的管理研究. 中国医疗设备. 2023(06): 120-125+156 .
    6. 潘炳煌 ,滕玉浩 ,钱凌欣 ,罗文 ,俞肇元 . 顾及外连通性的PIR传感器网络行为轨迹重构方法. 地理与地理信息科学. 2023(05): 1-7 .
    7. 张星,刘涛,孙龙培,李清泉,方志祥. 一种视觉与惯性协同的室内多行人目标定位方法. 武汉大学学报(信息科学版). 2021(05): 672-680 .
    8. 阳丽,邓芳明. 基于RFID传感和DBN的人体活动识别技术研究. 电子器件. 2021(05): 1274-1280 .
    9. 何肖娜,宋斌斌,余敏. 融合上下文感知的地标检测辅助WiFi-PDR室内定位. 测绘通报. 2020(06): 7-11+16 .
    10. 周于涛,吴华意,成洪权,郑杰,李学锡. 结合自注意力机制和结伴行为特征的行人轨迹预测模型. 武汉大学学报(信息科学版). 2020(12): 1989-1996 .

    Other cited types(12)

Catalog

    Article views (7770) PDF downloads (644) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return