ZHANG Yongze, DA Feipeng. A Multi-object Tracking Method Based on Dilatation Region Matching and Adaptive Trajectory Management Strategy[J]. Geomatics and Information Science of Wuhan University, 2024, 49(4): 572-581. DOI: 10.13203/j.whugis20230359
Citation: ZHANG Yongze, DA Feipeng. A Multi-object Tracking Method Based on Dilatation Region Matching and Adaptive Trajectory Management Strategy[J]. Geomatics and Information Science of Wuhan University, 2024, 49(4): 572-581. DOI: 10.13203/j.whugis20230359

A Multi-object Tracking Method Based on Dilatation Region Matching and Adaptive Trajectory Management Strategy

More Information
  • Received Date: September 25, 2023
  • Available Online: November 20, 2023
  • Objectives 

    Multi-object tracking (MOT) is a pivotal research area within the computer vision domain. Despite significant strides in MOT research, the field continues to grapple with formidable challenges: Indistinct appearance attributes of objects,objects exhibit irregular motion, anomalies in tracking arising from rigid trajectory lifecycle management strategies. These elements substantially undermine the precision and robustness of multi-object tracking endeavors.

    Methods 

    In response to these challenges, we present an advanced multi-object tracking algorithm that integrates dilatation intersection over union (DIOU) matching with an adaptive trajectory management approach. Initially, we introduce a metric based on a refined DIOU area for the primary matching between active trajectories and high-confidence detections, thereby improving the direct matching performance for high-quality detection boxes. Subsequently, for the re-matching of active trajectories with low-confidence detections, we implement a metric centered on a moderately dilated DIOU area, enhancing the tracking continuity of these detections. Furthermore, for reconnecting inactive trajectories with unmatched high-confidence detections, we employ a metric utilizing an extensively dilated DIOU area to bolster the probability of reactivating dormant trajectories. Lastly, an adaptive trajectory management strategy predicated on detection confidence scores is deployed to dynamically modulate the lifespan of trajectories, thereby mitigating the incidence of tracking anomalies and identity switches induced by occlusions and misidentifications.

    Results 

    (1) The application of the DIOU-based matching framework has yielded 5.4% increase in HOTA(higher order tracking accuracy) and a 1.5% increase in MOTA(multiple object tracking accuracy) on the DanceTrack dataset, corroborating the method's efficacy in densely populated scenes and complex motion environments. (2) The implementation of the adaptive trajectory management module has further resulted in 4.6% rise in HOTA, 0.8% elevation in MOTA, and 2.1% improvement in IDF1(identification F-score) on the DanceTrack dataset, demonstrating its capacity to efficiently counteract the limitations of fixed lifecycle sensitivities to false detections and missed detections.

    Conclusions 

    Although the refinement of data association and trajectory management strategies has led to a surge in tracking accuracy, the layering of multiple strategies has introduced a trade-off with computational efficiency, curtailing the peak performance of the tracking system.

  • [1]
    邹北骥, 李伯洲, 刘姝. 基于中心点检测和重识别的多行人跟踪算法[J]. 武汉大学学报(信息科学版), 2021, 46(9): 1345-1353.

    Zou Beiji, Li Bozhou, Liu Shu. A Multi-pedestrian Tracking Algorithm Based on Center Point Detection and Person Re-identification[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1345-1353.
    [2]
    罗霄月, 王艳慧, 张兴国. 视频与GIS协同的交通违规行为分析方法[J]. 武汉大学学报(信息科学版), 2023, 48(4): 647-655.

    Luo Xiaoyue,Wang Yanhui, Zhang Xingguo.A Violation Analysis Method of Traffic Targets Based on Video and GIS[J].Geomatics and Information Scien‑ce of Wuhan University, 2023, 48(4): 647-655.
    [3]
    张星, 刘涛, 孙龙培, 等. 一种视觉与惯性协同的室内多行人目标定位方法[J].武汉大学学报(信息科学版),2021,46(5): 672-680.

    Zhang Xing,Liu Tao,Sun Longpei, et al. A Visual-Inertial Collaborative Indoor Localization Method for Multiple Moving Pedestrian Targets[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 672-680.
    [4]
    Bai H X, Cheng W S, Chu P, et al. GMOT-40: A Benchmark for Generic Multiple Object Tracking[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021.
    [5]
    Cao J K, Pang J M, Weng X S, et al. Observation-Centric SORT: Rethinking SORT for Robust Multi-object Tracking[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023.
    [6]
    Zeng F G, Dong B, Zhang Y A, et al. MOTR: End-to-End Multiple-Object Tracking with Transformer[M]//The 17th European Conference on Computer Vision, Tel-Aviv, Israel, 2022.
    [7]
    Yu F W, Li W B, Li Q Q, et al. POI: Multiple Object Tracking with High Performance Detection and Appearance Feature[M]//The 14th European Conference on Computer Vision,Amsterdam,Netherlands, 2016.
    [8]
    Ren S,He K,Girshick R,et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. Advances in Neural Information Processing Systems, 2015, 28(10):489-502.
    [9]
    Zhang Y F, Wang C Y, Wang X G, et al. FairMOT: On the Fairness of Detection and Re-identification in Multiple Object Tracking[J]. International Journal of Computer Vision,2021,129(11):3069-3087.
    [10]
    Bochinski E, Eiselein V, Sikora T. High-Speed Tracking-by-Detection Without Using Image Information[C]//The 14th IEEE International Conferen‑ce on Advanced Video and Signal Based Surveillance, Lecce, Italy, 2017.
    [11]
    Zheng L, Bie Z, Sun Y F, et al. MARS: A Video Benchmark for Large-Scale Person Re-identification[C]//The14th European Conference on Computer Vision, Amsterdam, Netherlands, 2016.
    [12]
    Bewley A,Ge Z Y,Ott L,et al.Simple Online and Realtime Tracking[C]//The 23rd IEEE International Conference on Image Processing,Phoenix,USA, 2016.
    [13]
    Wojke N, Bewley A, Paulus D. Simple Online and Realtime Tracking with a Deep Association Metric[C]//IEEE International Conference on Image Processing, Beijing, China, 2017.
    [14]
    Chen L, Ai H Z, Zhuang Z J, et al. Real-Time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-Identification[C]//IEEE International Conference on Multimedia and Expo, San Diego, USA, 2018.
    [15]
    Wang Z D, Zheng L, Liu Y X, et al.Towards Real-Time Multi-object Tracking[C]//The 18th European Conference on Computer Vision, Munich, Germa
  • Cited by

    Periodical cited type(37)

    1. 罗斌,刘文豪,吴进,韩嘉福,吴文周,李洪省. 从地理信息系统到地理智能体. 地球信息科学学报. 2025(01): 83-99 .
    2. 王培晓,张恒才,张岩,程诗奋,张彤,陆锋. 地理空间智能预测研究进展与发展趋势. 地球信息科学学报. 2025(01): 60-82 .
    3. 王行风,陈国良. 地理知识图谱辅助的煤矿区生态损伤智慧识别研究. 地球信息科学学报. 2025(02): 367-380 .
    4. 张岸,朱俊锴. 新一代人工智能驱动下地图学研究的机遇与挑战. 地球信息科学学报. 2024(01): 35-45 .
    5. 刘康. 人类移动数据生成方法:研究进展与趋势探讨. 地球信息科学学报. 2024(04): 831-847 .
    6. 闾国年,袁林旺,陈旻,张雪英,周良辰,俞肇元,罗文,乐松山,吴明光. 地理信息学科发展的思考. 地球信息科学学报. 2024(04): 767-778 .
    7. 吴田军,骆剑承,李曼嘉,张静,赵馨,胡晓东,左进,闵帆,王玲玉,黄启厅. 地理时空数字化底座理论框架构建与应用实践. 地球信息科学学报. 2024(04): 799-830 .
    8. 王宇君,郭健,徐立,李宗明,李可欣. 利用深度森林进行船舶类型分类识别. 测绘科学技术学报. 2024(04): 425-432+440 .
    9. 邬伦,侯远樵,刘瑜. 大数据的6种地理学应用范式. 测绘学报. 2024(08): 1465-1479 .
    10. 石岩,王达,邓敏,杨学习. 时空异常探测:从数据驱动到知识驱动的内涵转变与实现路径. 测绘学报. 2024(08): 1493-1504 .
    11. 杨开先,甄峰. 地理学视角下城市空间智能化研究进展与思考. 地理科学. 2024(07): 1166-1177 .
    12. 李洁,王继周,毛曦,路文娟. 基于语义编码的自然语言时空问句语义理解. 测绘科学. 2024(11): 197-206 .
    13. 刘瑜,汪珂丽,邢潇月,郭浩,张维昱,罗琴瑶,高松,黄舟,李海峰,李新,王姣娥,王劲峰,朱递. 地理分析中的空间效应. 地理学报. 2023(03): 517-531 .
    14. 杨颖. 人工智能在地图学中的应用展望. 电子技术. 2023(03): 162-163 .
    15. 诸云强,孙凯,胡修棉,闾海荣,王新兵,杨杰,王曙,李威蓉,宋佳,苏娜,牟兴林. 大规模地球科学知识图谱构建与共享应用框架研究与实践. 地球信息科学学报. 2023(06): 1215-1227 .
    16. 陆锋,诸云强,张雪英. 时空知识图谱研究进展与展望. 地球信息科学学报. 2023(06): 1091-1105 .
    17. 诸云强,孙凯,李威蓉,王曙,宋佳,程全英,杨杰,牟兴林,耿文广,代小亮. 地球科学知识图谱比较分析与启示:构建方法与内容视角. 高校地质学报. 2023(03): 382-394 .
    18. 张彤,刘仁宇,王培晓,高楚林,刘杰,王望舒. 感知物理先验的机器学习及其在地理空间智能中的研究前景. 地球信息科学学报. 2023(07): 1297-1311 .
    19. 丁建丽,葛翔宇,王瑾杰,赵爽,丁玥,秦少峰,朱传梅,马雯. 地理学领域的人工智能应用与思考. 新疆大学学报(自然科学版)(中英文). 2023(04): 385-397 .
    20. 付偲,李超岭,张海燕,刘畅,李丰丹. 基于多模态特征融合的地质体识别方法. 地球科学. 2023(10): 3743-3752 .
    21. Yunqiang ZHU,Kai SUN,Shu WANG,Chenghu ZHOU,Feng LU,Hairong LV,Qinjun QIU,Xinbing WANG,Yanmin QI. An adaptive representation model for geoscience knowledge graphs considering complex spatiotemporal features and relationships. Science China Earth Sciences. 2023(11): 2563-2578 .
    22. 诸云强,孙凯,王曙,周成虎,陆锋,闾海荣,邱芹军,王新兵,祁彦民. 顾及复杂时空特征及关系的地球科学知识图谱自适应表达模型. 中国科学:地球科学. 2023(11): 2609-2622 .
    23. 陈杰,邓敏,刘启亮,石岩,刘慧敏. 大数据智能时代地理信息科学专业人才培养方案的提质与实践. 测绘通报. 2023(11): 163-167 .
    24. 黄露,侯爱羚. 基于省市联动的基础测绘数据智能更新技术. 地理空间信息. 2023(12): 83-85 .
    25. 许磊,李琪,陶雲,余红楚,杜文英,陈泽强,陈能成. 数据驱动的短临降水预报可靠性分析技术体系研究. 时空信息学报. 2023(04): 508-517 .
    26. 贺智,陈逸敏,刘凯. AI时代地理信息科学一流本科专业课程建设探索. 测绘通报. 2023(S2): 60-63 .
    27. 杨学习,邓敏,刘瑜. 社会感知与地理空间智能的研究动态与展望——“社会感知与地理空间智能”专栏导读. 地理与地理信息科学. 2022(01): 1-4 .
    28. 李双成,张文彬,陈立英,梁泽,张雅娟,王铮. 孪生空间及其应用——兼论地理研究空间的重构. 地理学报. 2022(03): 507-517 .
    29. 孔宇,甄峰,张姗琪. 智能技术影响下的城市空间研究进展与思考. 地理科学进展. 2022(06): 1068-1081 .
    30. 刘瑜,郭浩,李海峰,董卫华,裴韬. 从地理规律到地理空间人工智能. 测绘学报. 2022(06): 1062-1069 .
    31. 涂伟,夏吉喆,汪驰升,陆旻,乐阳. 面向智慧城市的空间计算与分析类课程教学模式探索与实践. 测绘地理信息. 2022(S1): 14-17 .
    32. 高嘉良,陆锋,彭澎,徐阳. 基于网络文本迁移学习的旅游知识图谱构建. 武汉大学学报(信息科学版). 2022(08): 1191-1200+1219 .
    33. 武芳,杜佳威,钱海忠,翟仁健. 地图综合智能化研究的发展与思考. 武汉大学学报(信息科学版). 2022(10): 1675-1687 .
    34. 兰锐,陈慧玲,童杨辉. “自然资源大脑”构建关键技术及应用设想. 自然资源信息化. 2022(05): 99-105 .
    35. 慎利,徐柱,李志林,刘万增,崔秉良. 从地理信息服务到地理知识服务:基本问题与发展路径. 测绘学报. 2021(09): 1194-1202 .
    36. 张永生,张振超,童晓冲,纪松,于英,赖广陵. 地理空间智能研究进展和面临的若干挑战. 测绘学报. 2021(09): 1137-1146 .
    37. 艾廷华. 深度学习赋能地图制图的若干思考. 测绘学报. 2021(09): 1170-1182 .

    Other cited types(13)

Catalog

    Article views PDF downloads Cited by(50)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return