WANG Leyang, YU Hang. Application of Total Least Squares Joint Adjustment to Volcano Inversion of Mogi Model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1333-1341. DOI: 10.13203/j.whugis20160469
Citation: WANG Leyang, YU Hang. Application of Total Least Squares Joint Adjustment to Volcano Inversion of Mogi Model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1333-1341. DOI: 10.13203/j.whugis20160469

Application of Total Least Squares Joint Adjustment to Volcano Inversion of Mogi Model

Funds: 

The National Natural Science Foundation of China 41664001

The National Natural Science Foundation of China 41204003

Support Program for Outstanding Youth Talents in Jiangxi Province 20162BCB23050

the National Key R & D Program of China 2016YFB0501405

Science and Technology Project of the Education Department of Jiangxi Province GJJ150595

More Information
  • Author Bio:

    WANG Leyang, PhD, associate professor, specializes in geodetic inversion and geodetic data processing. E-mail:wleyang@163.com

  • Received Date: July 05, 2017
  • Published Date: September 04, 2018
  • In this paper, a total least squares joint (TLS-J) adjustment method is proposed to the inversion of Mogi model with vertical and horizontal observational data. The proposed method considers the errors in both observation vector and coefficient matrix of the functional model of joint adjustment problem. Three forms of the minimum discriminate function methods are adopted to determine the weight scaling factor which are used to weigh the vertical and horizontal observation data. In view of the existing ill-posed problems in the joint adjustment, the L-curve method is adopted to determine the ridge parameter. Through practical examples, the total least squares joint method is systematically applied to the inversion of the Mogi model of Changbaishan Tianchi volcano. The results show that the discriminant function as the minimum can obtain the reasonable value of pressure source parameters and the relative weight ratio, which has a certain referential value to practical applications.
  • [1]
    Mogi K. Relations Between the Eruption of Various Volcanoes and the Deformations of the Ground Surfaces Around Them[J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 1958, 36:99-134 https://www.researchgate.net/publication/247382386_Relations_of_the_Eruptions_of_Various_Volcanoes_and_the_Deformation_of_Ground_Surfaces_around_them
    [2]
    胡亚轩, 王庆良, 崔笃信, 等. Mogi模型在长白山天池火山区的应用[J].地震地质, 2007, 29(1):144-151 doi: 10.3969/j.issn.0253-4967.2007.01.013

    Hu Yaxuan, Wang Qingliang, Cui Duxin, et al. Application of Mogi Model at Changbaishan Tianchi Volcano[J]. Seismology and Geology, 2007, 29(1):144-151 doi: 10.3969/j.issn.0253-4967.2007.01.013
    [3]
    胡亚轩, 王庆良, 崔笃信, 等.三种压力源模型对火山区地面变形的影响[J].东北地震研究, 2005, 21(3):33-38 doi: 10.3969/j.issn.1674-8565.2005.03.003

    Hu Yaxuan, Wang Qingliang, Cui Duxin, et al. Influences on Surface Deformation by the Three Different Stress Models in Volcanic Area[J]. Seismology Research of Northeast China, 2005, 21(3):33-38 doi: 10.3969/j.issn.1674-8565.2005.03.003
    [4]
    李克, 刘俊清, 盘晓东, 等. 2000-2007年期间长白山天池火山区地壳变形监测与分析[J].地震地质, 2009, 31(4):639-646 doi: 10.3969/j.issn.0253-4967.2009.04.007

    Li Ke, Liu Junqing, Pan Xiaodong, et al. Crust Deformation Monitoring and Research in Tianchi Volcano Area, Changbai Mountains from 2000-2007[J]. Seismology and Geology, 2009, 31(4):639-646 doi: 10.3969/j.issn.0253-4967.2009.04.007
    [5]
    胡亚轩, 郝明, 王雄, 等. L曲线法在反演火山区压力源参数中的应用[J].大地测量与地球动力学, 2009, 29(2):66-70 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz200902015

    Hu Yaxuan, Hao Ming, Wang Xiong, et al. Application of L-curve to the Inversion of Pressure Source Parameters in Volcano Area[J]. Journal of Geodesy and Geodynamics, 2009, 29(2):66-70 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz200902015
    [6]
    陈国浒. 长白山天池火山形变监测与模拟研究[D]. 北京: 中国地震局地质研究所, 2007 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1172335

    Chen Guohu. Deformation Monitoring and Simulation Research of Mt. Changbai Tianchi Volcano[D]. Beijing: Institute of Geology, China Earthquake Administration, 2007 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1172335
    [7]
    胡亚轩, 施行觉, 王庆良, 等.腾冲火山区地表垂直形变分析[J].大地测量与地球动力学, 2003, 23(2):37-41 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz200302006

    Hu Yaxuan, Shi Xingjue, Wang Qingliang, et al. Analysis of Vertical Deformation in Tengchong Volcano Area[J]. Journal of Geodesy and Geodyna-mics, 2003, 23(2):37-41 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz200302006
    [8]
    施行觉, 胡亚轩, 毛竹, 等.以垂直形变资料反演腾冲火山区岩浆活动性的初步研究[J].地震研究, 2005, 28(3):256-261 doi: 10.3969/j.issn.1000-0666.2005.03.011

    Shi Xingjue, Hu Yaxuan, Mao Zhu, et al. Vertical Deformation Inversion of Magma Activity in Tengchong Volcanic Area[J]. Journal of Seismological Research, 2005, 28(3):256-261 doi: 10.3969/j.issn.1000-0666.2005.03.011
    [9]
    Bifulco I, Raiconi G, Scarpa R. Computer Algebra Software for Least Squares and Total Least Norm Inversion of Geophysical Models[J]. Computers & Geosciences, 2009, 35(7):1427-1438 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0211153394
    [10]
    王乐洋.基于总体最小二乘的大地测量反演理论及应用研究[J].测绘学报, 2012, 41(4):629 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201203765934

    Wang Leyang. Research on Theory and Application of Total Least Squares in Geodetic Inversion[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(4):629 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201203765934
    [11]
    于冬冬. 病态总体最小二乘解算方法及应用[D]. 南昌: 东华理工大学, 2015 http://cdmd.cnki.com.cn/Article/CDMD-10405-1015990441.htm

    Yu Dongdong. Research on the Ill-Posed Total Least Squares Algorithm and Its Application[D]. Nanchang: East China University of Technology, 2015 http://cdmd.cnki.com.cn/Article/CDMD-10405-1015990441.htm
    [12]
    姚宜斌, 孔建.顾及设计矩阵随机误差的最小二乘组合新解法[J].武汉大学学报·信息科学版, 2014, 39(9):1028-1032 http://ch.whu.edu.cn/CN/Y2014/V39/I9/1028

    Yao Yibin, Kong Jian. A New Combined LS Method Considering Random Errors of Design Matrix[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9):1028-1032 http://ch.whu.edu.cn/CN/Y2014/V39/I9/1028
    [13]
    Schaffrin B, Wieser A. On Weighted Total Least Squares Adjustment for Linear Regression[J]. Journal of Geodesy, 2008, 82(7):415-421 doi: 10.1007/s00190-007-0190-9
    [14]
    王乐洋, 许才军, 鲁铁定.病态加权总体最小二乘平差的岭估计解法[J].武汉大学学报·信息科学版, 2010, 35(11):1346-1350 http://ch.whu.edu.cn/CN/Y2010/V35/I11/1346

    Wang Leyang, Xu Caijun, Lu Tieding. Ridge Estimation Method in Ill-Posed Weighted Total Least Squares Adjustment[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11):1346-1350 http://ch.whu.edu.cn/CN/Y2010/V35/I11/1346
    [15]
    王乐洋, 许才军.附有相对权比的总体最小二乘平差[J].武汉大学学报·信息科学版, 2011, 36(8):887-890 http://ch.whu.edu.cn/CN/Y2011/V36/I8/887

    Wang Leyang, Xu Caijun. Total Least Squares Adjustment with Weight Scaling Factor[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8):887-890 http://ch.whu.edu.cn/CN/Y2011/V36/I8/887
    [16]
    王乐洋, 余航, 陈晓勇. Partial EIV模型的解法[J].测绘学报, 2016, 45(1):22-29 http://d.old.wanfangdata.com.cn/Periodical/chxb201601004

    Wang Leyang, Yu Hang, Chen Xiaoyong. An Algorithm for Partial EIV Model[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(1):22-29 http://d.old.wanfangdata.com.cn/Periodical/chxb201601004
    [17]
    Wang Leyang, Xu Guangyu. Variance Component Estimation for Partial Errors-in-Variables Models[J]. Studia Geophysica et Geodaetica, 2016, 60(1):35-55 doi: 10.1007/s11200-014-0975-2
    [18]
    王乐洋, 许才军, 温扬茂.利用STLN和InSAR数据反演2008年青海大柴旦Mw6.3级地震断层参数[J].测绘学报, 2013, 42(2):168-176 http://d.old.wanfangdata.com.cn/Periodical/chxb201302002

    Wang Leyang, Xu Caijun, Wen Yangmao. Fault Parameters of 2008 Qinghai Dacaidan Mw6.3 Earthquake from STLN Inversion and InSAR Data[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(2):168-176 http://d.old.wanfangdata.com.cn/Periodical/chxb201302002
    [19]
    胡川, 陈义.非线性整体最小二乘平差迭代算法[J].测绘学报, 2014, 43(7):668-674 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201407003.htm

    Hu Chuan, Chen Yi. An Iterative Algorithm for Nonlinear Total Least Squares Adjustment[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(7):668-674 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201407003.htm
    [20]
    Jazaeri S, Amiri-Simkooei A R. Weighted Total Least Squares for Solving Non-linear Problem:GNSS Point Positioning[J]. Survey Review, 2015, 47(343):265-271 doi: 10.1179/1752270614Y.0000000132
    [21]
    Tikhonov A N. Solution of Incorrectly Formulated Problems and the Regularization Method[J]. Soviet Mathematics Doklady, 1963, 4:1305-1308 http://ci.nii.ac.jp/naid/10004315593
    [22]
    余航. 总体最小二乘联合平差方法及其应用研究[D]. 南昌: 东华理工大学, 2016 http://cdmd.cnki.com.cn/Article/CDMD-10405-1016758498.htm

    Yu Hang. Research on the Total Least Squares Joint Adjustment and Its Application[D]. Nanchang: East China University of Technology, 2016 http://cdmd.cnki.com.cn/Article/CDMD-10405-1016758498.htm
    [23]
    王乐洋, 余航.总体最小二乘联合平差[J].武汉大学学报·信息科学版, 2016, 41(12):1683-1689 http://ch.whu.edu.cn/CN/Y2016/V41/I12/1683

    Wang Leyang, Yu Hang. Total Least Squares Joint Adjustment[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12):1683-1689 http://ch.whu.edu.cn/CN/Y2016/V41/I12/1683
    [24]
    王振杰. 大地测量中不适定问题的正则化解法研究[D]. 武汉: 中国科学院测量与地球物理研究所, 2003 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y568497

    Wang Zhenjie. Research on the Regularization Solution of Ill-Posed Problems in Geodesy[D]. Wuhan: Institute of Geodesy and Geophysics, Chinese Aca-demy of Sciences, 2003 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y568497
    [25]
    王彬, 高井祥, 刘超, 等. L曲线法在等价权抗差岭估计模型中的应用[J].大地测量与地球动力学, 2012, 32(3):97-101 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz201203021

    Wang Bin, Gao Jingxiang, Liu Chao, et al. Application of L-curve Method to Equivalent Weighted Robust Ridge Estimation Model[J]. Journal of Geodesy and Geodynamics, 2012, 32(3):97-101 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz201203021
    [26]
    Dieterich J H, Decker R W. Finite Element Mode-ling of Surface Deformation Associated with Volca-nism[J]. Journal of Geophysical Research, 1975, 80(29):4094-4102 doi: 10.1029/JB080i029p04094

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return