WANG Leyang, XU Guangyu. Application of Posteriori Estimation of a Stochastic Model on the Weighted Total Least Squares Problem[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 255-261. DOI: 10.13203/j.whugis20140275
Citation: WANG Leyang, XU Guangyu. Application of Posteriori Estimation of a Stochastic Model on the Weighted Total Least Squares Problem[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 255-261. DOI: 10.13203/j.whugis20140275

Application of Posteriori Estimation of a Stochastic Model on the Weighted Total Least Squares Problem

Funds: The Project of Key Laboratory of Mapping from Space, NASG(K201502);The National Natural Science Foundation of China, Nos.41204003, 41161069, 41304020;National Department Public Benefit Research Foundation (Surveying,Mapping and Geoinformation), No. 201512026;Science and Technology Project of the Education Department of Jiangxi Province, Nos. KJLD12077, KJLD14049;The Project of Key Laboratory of Watershed Ecology and Geographical Environment Monitoring, NASG, No.WE2015005;Scientific Research Foundation of ECIT, No. DHBK201113.
More Information
  • Received Date: February 28, 2015
  • Published Date: February 04, 2016
  • Considering the situation that the weight matrix of observation vector and coefficient matrix may be inaccurate, an available algorithm is introduced in this paper, which is derived on the basis of combining the Helmert variance component estimation with a kind of fast weighted total least squares algorithm in the errors-in-variables models. And the derivative process of the fast weighted total least squares is described in detail and the comparison with three other algorithms is implemented in this paper. Using the fast weighted total least squares algorithm combining Helmert variance component estimation derived in this paper, the stochastic model and the unknown parameters of the functional model can be solved simultaneously. Three empirical examples, two straight line fitting and one linear parameter estimation, are also used to investigate the application of posteriori estimation of stochastic model on weighted total least squares problem. Results show that the algorithm is very effective.
  • [1]
    Schaffrin B, Wieser A. On Weighted Total Least-squares Adjustment for Linear Regression[J]. Journal of Geodesy, 2008, 82(7):415-421
    [2]
    Mahboub V. On Weighted Total Least-squares for Geodetic Transformations[J].Journal of Geodesy, 2012, 86(5):359-367
    [3]
    Amiri-Simkooei A R, Jazaeri S. Weighted Total Least Squares Formulated by Standard Least Sq-uares Theory[J]. Journal of Geodetic Science, 2012, 2(2):113-124
    [4]
    Cui Xizhang, Yu Zongchou, Tao Benzao, et al. Generalized Surveying Adjustment (New Edition)[M].Wuhan:Wuhan University Press, 2005(崔希璋, 於宗俦, 陶本藻, 等. 广义测量平差(新版)[M]. 武汉:武汉大学出版社, 2005)
    [5]
    Liu Zhiping, Zhang Shubi. Variance-covariance Component Estimation Method Based on Generalization Adjustment Factor[J].Geomatics and Information Science of Wuhan University, 2013, 38(8):925-929(刘志平, 张书毕. 方差-协方差分量估计的概括平差因子法[J].武汉大学学报·信息科学版, 2013, 38(8):925-929)
    [6]
    Wang Leyang, Xu Caijun, Zhang Chaoyu. A Two-step Method to Determine Relative Weight Ratio Factors in Joint Inversion[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(1):19-24(王乐洋, 许才军, 张朝玉. 一种确定联合反演中相对权比的两步法[J].测绘学报,2012, 41(1):19-24)
    [7]
    Amiri-simkooei A R. Application of Least Squares Variance Component Estimation to Errors-in-Variables Models[J]. Journal of Geodesy, 2013, 87(10-12):935-944
    [8]
    Xu P, Liu J. Variance Components in Errors-in-Variables Models:Estimability, Stability and Bias Analysis[J]. Journal of Geodesy, 2014, 88(8):719-734
    [9]
    Neri F, Saitta G, Chiofalo S. An Accurate and Straightforward Approach to Line Regression Analysis of Error-affected Experimental Data[J]. Journal of Physics E:Scientific Instruments, 1989, 22(4):215-217
    [10]
    Wang Leyang. Research on Theory and Application of Total Least Squares in Geodetic Inversion[D]. Wuhan:Wuhan University, 2011(王乐洋. 基于总体最小二乘的大地测量反演理论及应用研究[D]. 武汉:武汉大学, 2011)
    [11]
    Wang Leyang. Trilateration Net's Coordinate Adjustment Based on Total Least Squares[J]. Journal of Geodesy and Geodynamics, 2012, 32(6):81-85(王乐洋. 测边网坐标的总体最小二乘平差方法[J].大地测量与地球动力学, 2012, 32(6):81-85)
    [12]
    Yao Yibin, Kong Jian. A New Combined LS Method Considering Random Errors of Design Matrix[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9):1028-1032(姚宜斌,孔建. 顾及设计矩阵随机误差的最小二乘组合新解法[J]. 武汉大学学报·信息科学版, 2014, 39(9):1028-1032)
    [13]
    Shen Y, Li B, Chen Y. An Iterative Solution of Weighted Total Least-squares Adjustment[J]. Journal of Geodesy, 2011, 85(4):229-238
  • Related Articles

    [1]WANG Leyang, SUN Jianqiang. Variance Components Estimation for Total Least-Squares Regression Prediction Model[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 280-288. DOI: 10.13203/j.whugis20180450
    [2]BAI Shengxiang, ZHENG Chundi, ZHANG Sen. Interferometric Phase Estimation Based on Weighted Joint Covariance Matrix Fitting[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 475-481. DOI: 10.13203/j.whugis20140224
    [3]LIANG Zhifeng, LING Feilong, CHEN Erxue. Classification of Full-polarimetric Synthetic Aperture Radar Data with Maximum a Posteriori[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 648-651.
    [4]ZHAO Jun, GUO Jianfeng. Auniversal Formula of Variance Component Estimation[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 580-583.
    [5]GUO Chunxi, NIE Jianliang, WANG Bin, JIANG Guangwei. The Fitting of GPS-Level and Gravity Quasigeoid Based on Adaptive Collocation[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 44-47.
    [6]Dai Honglei, Xu Panlin, Lu Xiushan. The Variance Estimation of Corresponding Lines in GIS Overlay Operation[J]. Geomatics and Information Science of Wuhan University, 1998, 23(1): 14-17,61.
    [7]Wu Xiaoqing. The Method of Helmert-Weight Factor of Variance Component Estimation[J]. Geomatics and Information Science of Wuhan University, 1992, 17(4): 1-10.
    [8]Sheng Leshan. Variance Components Estimate in Three Dimension Network Adjustment[J]. Geomatics and Information Science of Wuhan University, 1990, 15(1): 91-98.
    [9]Wu Xiaoqing. The Method of Weight Factor for Variance Component Estimation[J]. Geomatics and Information Science of Wuhan University, 1989, 14(4): 8-15.
    [10]Chen Ying. A New Space Resection Method and a Posteriori weight Estimation[J]. Geomatics and Information Science of Wuhan University, 1985, 10(3): 61-68.
  • Cited by

    Periodical cited type(5)

    1. 朱武松. 抗差Helmert分量估计在地铁CPⅢ控制网平差中的应用. 城市勘测. 2024(02): 133-136 .
    2. 王乐洋,孙坚强. 总体最小二乘回归预测模型的方差分量估计. 武汉大学学报(信息科学版). 2021(02): 280-288 .
    3. 王祝安,陈义,毛鹏宇. 加权整体最小二乘的验后估计在三维坐标转换中的应用. 大地测量与地球动力学. 2018(02): 216-220 .
    4. 王乐洋,李海燕,陈晓勇. 拟牛顿修正法解算不等式约束加权总体最小二乘问题. 武汉大学学报(信息科学版). 2018(01): 127-132 .
    5. 陶武勇,鲁铁定,许光煜,杨世安. 稳健总体最小二乘Helmert方差分量估计. 大地测量与地球动力学. 2017(11): 1193-1197 .

    Other cited types(6)

Catalog

    Article views (1597) PDF downloads (489) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return