SU Lina, ZHANG Yong. Automatic Detection and Estimation of Coseismic and Postseismic Deformation in GPS Time Series[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1504-1510. DOI: 10.13203/j.whugis20170016
Citation: SU Lina, ZHANG Yong. Automatic Detection and Estimation of Coseismic and Postseismic Deformation in GPS Time Series[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1504-1510. DOI: 10.13203/j.whugis20170016

Automatic Detection and Estimation of Coseismic and Postseismic Deformation in GPS Time Series

Funds: 

The Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Personnel of China 

the Combining of Monitoring/Forecast/Research Fund Program of China Earthquake Administration CEA-JC/3JH-172703

More Information
  • Author Bio:

    SU Lina, PhD candidate, specializes in GPS data processing and crustal deformation. E-mail: sulinawhu@163.com

  • Received Date: January 13, 2017
  • Published Date: October 04, 2018
  • Once an earthquake occurs, nearby GPS stations are able to capture the coseismic and post-seismic deformation which is critic for the geoscience research and maintenance of the dynamitic reference frame, thus to identify and estimate them is also an important part of the GPS time series analysis. The comprehensive inspection method to automatic detect and estimate coseismic and postseismic deformation is proposed and employed here, which models the GPS time series and comprehensively considers coseismic offsets and their coherence from different sources, and RMS improvement to decide if the station is affected by an earthquake. If it is, trail-and-error is used to search the best decay time and then all parameters including coseismic and postseismic deformations are estimated through linear least squares method. Earthquake examples account for the effectiveness of the proposed method.
  • [1]
    Bock Y, Agnew D C, Fang P, et al. Determination of Crustal Deformation from the Landers Earthquake Sequence Using Continuous Geodetic Mea-surement[J]. Nature, 1993, 361:338-340
    [2]
    Larson K M, Freymueller J T, Philipsen S. Global Plate Velocities from the Global Positioning System[J]. J Geophys Res, 1997, 102(B5):9961-9981 doi: 10.1029/97JB00514
    [3]
    Gan W J, Zhang P Z, Zheng K S, et al.Present-day Crustal Motion Within the Tibetan Plateau Inferred from GPS Measurements[J].J Geophys Res, 2007, 112(B8):1-14 doi: 10.1029-2005JB004120/
    [4]
    Yue H, Lay T.Inversion of High-rate (1 sps) GPS Data for Rupture Process of the 11 March 2011 Tohoku Earthquake (Mw 9.1)[J].Geophys Res Lett, 2011, 38:L00G09 https://www.deepdyve.com/lp/wiley/inversion-of-high-rate-1-sps-gps-data-for-rupture-process-of-the-11-EVB1QY7XkL
    [5]
    Paul S. Earthquake and Volcano Deformation[M]. USA:Princeton University Press, 2010
    [6]
    Bock Y, Melgar D.Physical Applications of GPS Geodesy:A Review[J]. Reportson Progress in Physics, 2016, 79(10):106801, doi: 10.1088/00344885
    [7]
    Fang P, Su L, Goldberg D, et al. Modeling Postseismic Deformation of GNSS Global Tracking Network Stations[C].International Symposium Asia Pacific Space Geodynamics, Moscow, Russia, 2015
    [8]
    Williams S D P. Offsets in Global Positioning System Time Series[J].J Geophys Res, 2003, 108:211-227 http://cn.bing.com/academic/profile?id=b88eb3304d55ea7cc882ee40649f2ac5&encoded=0&v=paper_preview&mkt=zh-cn
    [9]
    Gazeaux J, Williams S, King M, et al. Detecting Offsets in GPS Time Series:First Results from the Detection of Offsets in GPS Experiment[J]. J Geophys Res, 2013, 118:2397-2407 doi: 10.1002/jgrb.50152
    [10]
    Riel B, Simons M, Agram P, et al. Detecting Transient Signals in Geodetic Time Series Using Sparse Estimation Techniques[J]. J Geophys Res Solid Earth, 2014, 119(6):5140-5160 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0233732274
    [11]
    Zhang J. Continuous GPS Measurements of Crustal Deformation in Southern California[D]. San Diego: Univ of Calif, 1996
    [12]
    Nikolaidis R. Observation of Geodetic and Seismic Deformation with the Global Positioning System[D]. San Diego: Univ of Calif, 2002
    [13]
    Shen Z, Jackson D, Feng Y, et al. Postseismic Deformation Following the Landers Earthquake, California, 28 June 1992[J]. Bull Seismol Soc Am, 1994, 84(3):780-791 http://cn.bing.com/academic/profile?id=0a1d301f91d20f2d773ba96d596e4fc0&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    Marone C, Scholz C H, Bilham R. On the Mecha-nics of Earthquake Afterslip[J]. J Geophys Res, 1991, 96:8441-8452 doi: 10.1029/91JB00275
    [15]
    Savage J C, Svarc J. Postseismic Deformation Associated with the 1992 Mw=7.3 Landers Earthquake, Southern California[J].J Geophys Res, 1997, 102:7565-7577 http://cn.bing.com/academic/profile?id=e516a314c49c5888e11df930e9442a62&encoded=0&v=paper_preview&mkt=zh-cn
    [16]
    Savage J C, Svarc J. Postseismic Relaxation Follo-wing the 1992 M7.3 Landers and 1999 M7.1 Hector Mine Earthquakes, Southern California[J]. J Geophys Res, 2009, 114:B01401 http://cn.bing.com/academic/profile?id=13c3dd0571395b1f2f93a26c7d32b5ea&encoded=0&v=paper_preview&mkt=zh-cn
    [17]
    Savage J C, Langbein J. Postearthquake Relaxation After the 2004 M6 Parkfield, California, Earthquake and Rate-and-State Friction[J]. J Geophys Res, 2008, 113:B10407 doi: 10.1029/2008JB005723
    [18]
    Gonzalez-Ortega A, Fialko Y, Sandwell D, et al. El Mayor-Cucapah (Mw 7.2) Earthquake:Early Near-field Postseismic Deformation from InSAR and GPS Observations[J]. J Geophys Res, 2014, 119:1482-1497 doi: 10.1002/2013JB010193
    [19]
    Dong D, Fang P, Bock Y, et al. Spatiotemporal Filtering Using Principal Component Analysis and Karhunen-Loeve Expansion Approaches for Regional GPS Network Analysis[J]. J Geophys Res, 2006, 111:B03405 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ02751244/
  • Related Articles

    [1]LIU Wanzeng, CHEN Jun, REN Jiaxin, XU Chen, LI Ran, ZHAI Xi, JIANG Zhihao, ZHANG Ye, PENG Yunlu, WANG Xinpeng. Hybrid Intelligence-Based Framework for Automatic Map Inspecting Technology[J]. Geomatics and Information Science of Wuhan University, 2022, 47(12): 2038-2046. DOI: 10.13203/j.whugis20220683
    [2]ZHANG Lu, LIAO Mingsheng, DONG Jie, XU Qiang, GONG Jianya. Early Detection of Landslide Hazards in Mountainous Areas of West China Using Time Series SAR Interferometry-A Case Study of Danba, Sichuan[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2039-2049. DOI: 10.13203/j.whugis20180181
    [3]FENG Wenqing, ZHANG Yongjun. Object-oriented Change Detection for Remote Sensing Images Based on Fuzzy Comprehensive Evaluation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 875-881. DOI: 10.13203/j.whugis20140291
    [4]ZHAO Lihua, YANG Yuanxi. Crustal Deformation Analysis of Combined Geophysical Information with Geodetic Measurements[J]. Geomatics and Information Science of Wuhan University, 2009, 34(9): 1090-1093.
    [5]HAN Baomin, OU Jikun, QU Guoqing. A Comprehensive Kalman Filtering and Its Application to GPS-based Orbit Determination for LEOs[J]. Geomatics and Information Science of Wuhan University, 2005, 30(6): 493-496.
    [6]WANG Jian, GAO Jingxiang, MIAO Lili. Strong Contaminated Single Epoch GPS Deformation Signals Extracting and Gross Error Detection[J]. Geomatics and Information Science of Wuhan University, 2004, 29(5): 416-419. DOI: 10.13203/j.whugis2004.05.010
    [7]He Ping'an, Yu Changming, Yang Jinling, Xu Zhongbao. Automatic Online Inspecting System for the Laser Swinger[J]. Geomatics and Information Science of Wuhan University, 1999, 24(3): 276-278.
    [8]Wang Xinzhou, Wang Shuliang. Fuzzy Comprehensive Method and Its Application in Land Grading[J]. Geomatics and Information Science of Wuhan University, 1997, 22(1): 42-46.
    [9]Shen Bangxing. Fuzzy Comprehensive Evaluation of the Experimental Design for the Multi-target[J]. Geomatics and Information Science of Wuhan University, 1989, 14(1): 57-65.
    [10]Hu Jicai. Fuzzy Comprehensive Evaluation and Qualitative Assessment of a Topographic Map[J]. Geomatics and Information Science of Wuhan University, 1986, 11(3): 114-125.
  • Cited by

    Periodical cited type(4)

    1. 陆福鑫,龚晓颖,孙铭炜,余章应,黄丁发. 川藏地区CORS坐标时间序列预处理与软件实现. 全球定位系统. 2024(02): 88-97 .
    2. 吕国强,景孝复,李晓东,马慧婷,关冬晓. 温泉体应变观测数据不同频段影响因素及特征. 内陆地震. 2024(03): 299-306 .
    3. 任安康,徐克科. 顾及有色噪声的GNSS时间序列时域信号提取. 地球物理学报. 2023(02): 518-529 .
    4. 高涵,袁希平,甘淑,张明. 利用HHT-EEMD方法分析云南区域GNSS应变时序孕震信息. 测绘学报. 2022(09): 1899-1910 .

    Other cited types(3)

Catalog

    Article views (1770) PDF downloads (511) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return