LIU Wanzeng, CHEN Jun, REN Jiaxin, XU Chen, LI Ran, ZHAI Xi, JIANG Zhihao, ZHANG Ye, PENG Yunlu, WANG Xinpeng. Hybrid Intelligence-Based Framework for Automatic Map Inspecting Technology[J]. Geomatics and Information Science of Wuhan University, 2022, 47(12): 2038-2046. DOI: 10.13203/j.whugis20220683
Citation: LIU Wanzeng, CHEN Jun, REN Jiaxin, XU Chen, LI Ran, ZHAI Xi, JIANG Zhihao, ZHANG Ye, PENG Yunlu, WANG Xinpeng. Hybrid Intelligence-Based Framework for Automatic Map Inspecting Technology[J]. Geomatics and Information Science of Wuhan University, 2022, 47(12): 2038-2046. DOI: 10.13203/j.whugis20220683

Hybrid Intelligence-Based Framework for Automatic Map Inspecting Technology

Funds: 

The Open Fund of Hubei Luojia Laboratory 220100037

the National Key Research and Development Program of China 2022YFB3904205

More Information
  • Author Bio:

    LIU Wanzeng, PhD, senior engineer,majors in GIS. E-mail: luwnzg@163.com

  • Corresponding author:

    CHEN Jun, professor, Academician of Chinese Academy of Engineering. E-mail: chenjun@ngcc.cn

    REN Jiaxin, PhD candidate. E-mail: jaycecd@foxmail.com

  • Received Date: October 17, 2020
  • Available Online: January 05, 2023
  • Published Date: December 04, 2022
  • Map inspection is the main responsibility of the national mapping and geographic information administrative department. The current map inspection in China relies on manual visual judgment, which is costly and inefficient. How to move from manual detection highly dependent on expert experience to automatic judgment with hybrid intelligence is a technical difficulty and painful problem facing map inspecting in China. We propose a hybrid intelligence approach for automatic map inspection based on knowledge and algorithm; design a technical framework for automatic map inspection based on hybrid intelligence and point out three key technologies that need to be broken through; combined with a typical case of intelligent inspection of "problematic maps", the technical realization path of intelligent map inspection is given.
  • [1]
    李展. 浅谈"问题地图"的识别和预防[J]. 测绘与空间地理信息, 2021, 44(8): 204-206 https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH202108054.htm

    Li Zhan. Identification and Prevention of Incorrect Maps[J]. Geomatics & Spatial Information Technology, 2021, 44(8): 204-206 https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH202108054.htm
    [2]
    韩权卫. 浅谈地图审核制度的重要意义[J]. 中国测绘, 2016(1): 12-15 https://www.cnki.com.cn/Article/CJFDTOTAL-ZCHZ201601004.htm

    Han Quanwei. On the Significance of Map Inspection System[J]. China Surveying and Mapping. 2016(1): 12-15 https://www.cnki.com.cn/Article/CJFDTOTAL-ZCHZ201601004.htm
    [3]
    中华人民共和国自然资源部. 中华人民共和国测绘法[Z]. 2017: 2022

    Ministry of Natural Resources of the People?s Republic of China. Surveying and Mapping Law of the People?s Republic of China[Z]. 2017: 2022
    [4]
    陈其宏. 地图审核目前存在的问题及解决办法[J]. 测绘与空间地理信息, 2013, 36(11): 215-218 https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201311068.htm

    Chen Qihong. Map Audit the Current Problems and Solutions[J]. Geomatics & Spatial Information Technology, 2013, 36(11): 215-218 https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201311068.htm
    [5]
    白敬辉. 地图审核在线审批系统分析与设计[J]. 测绘通报, 2019(7): 109-113 doi: 10.13474/j.cnki.11-2246.2019.0230

    Bai Jinghui. Analysis and Design of Online Map Audit and Approval System[J]. Bulletin of Surveying and Mapping, 2019(7): 109-113 doi: 10.13474/j.cnki.11-2246.2019.0230
    [6]
    白敬辉, 张文晖, 季绍鹏, 等. 基于送审地图类别的地图审核信息平台构建与应用服务[J]. 国土资源信息化, 2020(2): 31-36

    Bai Jinghui, Zhang Wenhui, Ji Shaopeng, et al. Construction and Application Service of Map Audit Information Platform Based on Map Submission Category[J]. Land and Resources Informatization, 2020(2): 31-36
    [7]
    任加新, 刘万增, 李志林, 等. 利用卷积神经网络进行"问题地图"智能检测[J]. 武汉大学学报·信息科学版, 2021, 46(4): 570-577 doi: 10.13203/j.whugis20190259

    Ren Jiaxin, Liu Wanzeng, Li Zhilin, et al. Intelligent Detection of "Problematic Map" Using Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 570-577 doi: 10.13203/j.whugis20190259
    [8]
    陈军, 刘万增, 武昊, 等. 智能化测绘的基本问题与发展方向[J]. 测绘学报, 2021, 50(8): 995-1005 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202108002.htm

    Chen Jun, Liu Wanzeng, Wu Hao, et al. Smart Surveying and Mapping: Fundamental Issues and Research Agenda[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 995-1005 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202108002.htm
    [9]
    陈军. DTM在改善遥感影象分类精度中的应用[J]. 武汉大学学报·信息科学版, 1984, 9(1): 69-81 http://ch.whu.edu.cn/article/id/5290

    Chen Jun. The Application of DTM in Improving Classification Accuracy of Remote Sensing Imagery[J]. Geomatics and Information Science of Wuhan University, 1984, 9(1): 69-81 http://ch.whu.edu.cn/article/id/5290
    [10]
    李小文, 王锦地, 胡宝新. 先验知识在遥感反演中的作用[J]. 中国科学: D辑, 1998, 28(1): 67-72 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199801011.htm

    Li Xiaowen, Wang Jindi, Hu Baoxin. The Function of Prior Knowledge in Remote Sensing Inversion[J]. Science in China (Series D), 1998, 28(1): 67-72 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199801011.htm
    [11]
    Lin Y Q, Lü F J, Zhu S H, et al. Large-Scale Image Classification: Fast Feature Extraction and SVM Training[C]//The 24th IEEE Conference on Computer Vision and Pattern Recognition, CO, USA, 2011
    [12]
    Chandra M A, Bedi S S. Survey on SVM and Their Application in Image Classification[J]. International Journal of Information Technology, 2021, 13(5): 1-11
    [13]
    Gontumukkala S S T, Godavarthi Y S V, Gonugunta B R R T, et al. Analysis of Image Classification Using SVM[C]//The 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India, 2021
    [14]
    Fan J, Lee J, Lee Y. A Transfer Learning Architecture Based on a Support Vector Machine for Histopathology Image Classification[J]. Applied Sciences, 2021, 11(14): 6380
    [15]
    Niu Z, Pan H, Han Q, et al. An Improved Classification Method Based on Random Forest for Medical Image[J]. Advances in Intelligent Systems and Computing, 2014, 213: 21-31
    [16]
    詹曙, 姚尧, 高贺. 基于随机森林的脑磁共振图像分类[J]. 电子测量与仪器学报, 2013, 27(11): 1067-1072 https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY201311012.htm

    Zhan Shu, Yao Yao, Gao He. Magnetic Resonance Image Classification of Brain Based on Random Forest[J]. Journal of Electronic Measurement and Instrument, 2013, 27(11): 1067-1072 https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY201311012.htm
    [17]
    Wu J. Efficient HIK SVM Learning for Image Classification[J]. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 2012, 21(10): 4442-4453
    [18]
    Li H, Di L P, Huang X F, et al. Laser Intensity Used in Classification of LiDAR Point Cloud Data[C]//IEEE International Geoscience & Remote Sensing Symposium, Boston, USA, 2008
    [19]
    Brell M, Segl K, Guanter L, et al. Hyperspectral and LiDAR Intensity Data Fusion: A Framework for the Rigorous Correction of Illumination, Anisotropic Effects, and Cross Calibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2799-2810
    [20]
    Liu W, Yamazaki F. Object-Based Shadow Extraction and Correction of High-Resolution Optical Satellite Images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(4): 1296-1302
    [21]
    Luo R, Liao W, Zhang H, et al. Fusion of Hyperspectral and LiDAR Data for Classification of Cloud-Shadow Mixed Remote Sensed Scene[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8): 3768-3781
    [22]
    Priem F, Canters F. Synergistic Use of LiDAR and APEX Hyperspectral Data for High-Resolution Urban Land Cover Mapping[J]. Remote Sensing, 2016, 8(10): 787
    [23]
    Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classification with Deep Convolutional Neural Networks[J]. Communications of the ACM, 2017, 60(6): 84-90
    [24]
    Szegedy C, Liu W, Jia Y, et al. Going Deeper with Convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015
    [25]
    He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition, Los Alamitos, CA, USA, 2016
    [26]
    Chollet F. Xception: Deep Learning with Depthwise Separable Convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017
    [27]
    Huang G, Liu Z, Van Der Maaten L, et al. Densely Connected Convolutional Networks[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017
    [28]
    Hu J, Shen L, Sun G. Squeeze-and-Excitation Networks[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 2018
    [29]
    Tan M, Le Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks[C]//International Conference on Machine Learning, PMLR, Long Beach, California, USA, 2019
    [30]
    任福, 侯宛玥. 面向机器阅读的地图名称注记类别识别方法[J]. 武汉大学学报·信息科学版, 2020, 45(2): 273-280 doi: 10.13203/j.whugis20180503

    Ren Fu, Hou Wanyue. Identification Method of Map Name Annotation Category for Machine Reading[J]. Geomatics and Information Science of Wuhan University. 2020, 45(2): 273-280 doi: 10.13203/j.whugis20180503
    [31]
    杜凯旋, 王亮, 王勇, 等. 主动学习和卷积神经网络的地图图片识别方法[J]. 测绘科学, 2020, 45(7): 139-147

    Du Kaixuan, Wang Liang, Wang Yong, et al. An Identification Method of Map Images Based on Activate Learning and Convolutional Neural Network[J]. Science of Surveying and Mapping, 2020, 45(7): 139-147
    [32]
    艾廷华. 深度学习赋能地图制图的若干思考[J]. 测绘学报, 2021, 50(9): 1170-1182 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202109005.htm

    Ai Tinghua. Some Thoughts on Deep Learning Enabling Cartography[J]. Acta Geodaetica et Cartographica Sinica, 2021: 50(9): 1170-1182 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202109005.htm
    [33]
    周熙然, 李德仁, 薛勇, 等. 地图图像智能识别与理解: 特征、方法与展望[J]. 武汉大学学报·信息科学版, 2022, 47(5): 641-650 doi: 10.13203/j.whugis20210300

    Zhou Xiran, Li Deren, Xue Yong, et al. Intelligent Map Image Recognition and Understanding: Representative Features, Methodology and Prospects[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 641-650 doi: 10.13203/j.whugis20210300
    [34]
    Marcus G. Deep Learning: A Critical Appraisal[J]. arXiv, 2018, DOI: 1801.00631
    [35]
    付东杰, 肖寒, 苏奋振, 等. 遥感云计算平台发展及地球科学应用[J]. 遥感学报. 2021, 25(1): 220-230 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202101014.htm

    Fu Dongjie, Xiao Han, Su Fenzhen, et al. Remote Sensing Cloud Computing Platform Development and Earth Science Application[J]. National Remote Sensing Bulletin, 2021, 25(1): 220-230 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202101014.htm
    [36]
    高凡, 乐鹏, 姜良存, 等. GeoCube: 面向大规模分析的多源对地观测时空立方体[J]. 遥感学报, 2022, 26(6): 1051-1066 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202206001.htm

    Gao Fan, Yue Peng, Jiang Liangcun, et al. GeoCube: A Spatio-Temporal Cube Toward Massive and Multi-source EO Data Analysis[J]. National Remote Sensing Bulletin, 2022, 26(6): 1051-1066 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202206001.htm
    [37]
    段文雪, 胡铭, 周琼, 等. 云计算系统可靠性研究综述[J]. 计算机研究与发展, 2020, 57(1): 102-123

    Duan Wenxue, Hu Ming, Zhou Qiong, et al. Reliability in Cloud Computing System: A Review[J]. Journal of Computer Research and Development, 2020, 57(1): 102-123
    [38]
    赵忠明, 高连如, 陈东, 等. 卫星遥感及图像处理平台发展[J]. 中国图象图形学报, 2019, 24(12): 2098-2110

    Zhao Zhongming, Gao Lianru, Chen Dong, et al. Development of Satellite Remote Sensing and Image Processing Platform[J]. Journal of Image and Graphics, 2019, 24(12): 2098-2110
    [39]
    李德仁, 姚远, 邵振峰. 智慧城市中的大数据[J]. 武汉大学学报·信息科学版, 2014, 39(6): 631-640 doi: 10.13203/j.whugis20140135

    Li Deren, Yao Yuan, Shao Zhenfeng. Big Data in Smart City[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 631-640 doi: 10.13203/j.whugis20140135
    [40]
    李乔, 郑啸. 云计算研究现状综述[J]. 计算机科学, 2011, 38(4): 32-37 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201104008.htm

    Li Qiao, Zheng Xiao. Research Survey of Cloud Computing[J]. Computer Science, 2011, 38(4): 32-37 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201104008.htm
  • Related Articles

    [1]WANG Mengqi, LI Bozhao, WANG Zhenli, LIU Songcao, LIAO Cheng, CAI Zhongliang. An Automatic Cartography Framework Integrating Knowledge Graph and Large Language Model[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240266
    [2]ZHU Jun, LAI Jianbo, XIE Yakun, CHEN Peijing, SUN Wenjin. Knowledge-Guided Spatiotemporal Narrative 3D Visualization Method for the Bridge Construction Process[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1650-1660. DOI: 10.13203/j.whugis20230239
    [3]WU Jianhua, WEI Ning, ZHANG Yongsheng, ZHANG Yufei, CHEN Yuanyuan, TU Haowen, QIN Kun, LIN Hui. Linguistic-Spatial Intelligence: Opportunities and Challenges of Interdisciplinary Innovation[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240351
    [4]ZHENG Yu. The Knowledge System for Intelligent Cities[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 1-16. DOI: 10.13203/j.whugis20220366
    [5]ZHU Jun, FU Lin, LI Weilian, ZHENG Quanhong, HU Ya, GUO Yukun, HUANG Pengcheng, YANG Li. Knowledge-Guided Dynamic Representation Method of Landslide Disaster Scene[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1255-1262. DOI: 10.13203/j.whugis20200027
    [6]JIANG Jingchao, YU Jie, QIN Chengzhi, LIU Junzhi, LI Runkui, ZHU Liangjun, ZHU Axing. A Knowledge-driven Method for Intelligent Setting of Parameters in Hydrological Modeling[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 525-530. DOI: 10.13203/j.whugis20150044
    [7]ZHU Qing, MIAO Shuangxi, DING Yulin, QI Hua, HE Xiaobo, CAO Zhenyu. Knowledge-guided Gross Errors Detection and Elimination Approach of Landslide Monitoring Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 496-502. DOI: 10.13203/j.whugis20150125
    [8]ZHONG Heping, TIAN Zhen, WU Haoran, ZHANG Sen, TANG Jinsong. Parallel Quality-Guided Phase Unwrapping Algorithm in Shared Memory Environment[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 130-135. DOI: 10.13203/j.whugis20140728
    [9]ZHONG Heping, ZHANG Sen, TIAN Zhen, TANG Jinsong. A Fast Quality-guided Phase Unwrapping Algorithmin Heterogeneous Environment[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 756-760. DOI: 10.13203/j.whugis20130518
    [10]HE Yong, SHA Zongyao. Structure of Decision Support System Based on Intelligent Object[J]. Geomatics and Information Science of Wuhan University, 2004, 29(2): 116-119.
  • Cited by

    Periodical cited type(9)

    1. 任加新,刘万增,陈军,张蓝,陶远,朱秀丽,赵婷婷,李然,翟曦,王海清,周晓光,侯东阳,王勇. 知识引导的碎片化栅格地形图比例尺智能识别. 测绘学报. 2024(01): 146-157 .
    2. 何光强,刘云刚. 总体国家安全观视角下的国家版图安全及其治理. 社会主义研究. 2024(01): 156-164+172 .
    3. 杜清运,况路路,任福,刘江涛,冯昶,陈卓宁,张浡聪,郑康,李智程. 自动驾驶高精度地图特征分析及发展展望. 地球信息科学学报. 2024(01): 15-24 .
    4. 李必军,郭圆,周剑,唐有辰,董全华,李治江. 智能驾驶高精地图发展与展望. 武汉大学学报(信息科学版). 2024(04): 491-505 .
    5. 吴佳桐,狄琳,黄龙. 智能驾驶高精地图数智化审查研究. 测绘通报. 2024(10): 174-178 .
    6. 陈军,王艳慧,武昊,刘万增. 时空信息赋能高质量发展的基本问题与发展方向. 时空信息学报. 2023(01): 1-11 .
    7. 纪银晓. 科技期刊编辑加工过程中常见的“问题地图”及预防措施. 出版与印刷. 2023(04): 97-103 .
    8. 谢富鑫,郭圆,周剑,郭思雨,李必军. 智能汽车高精地图众源更新研究现状. 人工智能. 2023(05): 48-54 .
    9. 蒋树芳,何书金,段宗奇,黄光玉. 一种基于“面-线-点”要素的期刊地图内容有序核查方法. 中国科技期刊研究. 2023(11): 1418-1426 .

    Other cited types(1)

Catalog

    Article views (876) PDF downloads (179) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return