Citation: | LIU Wanzeng, CHEN Jun, REN Jiaxin, XU Chen, LI Ran, ZHAI Xi, JIANG Zhihao, ZHANG Ye, PENG Yunlu, WANG Xinpeng. Hybrid Intelligence-Based Framework for Automatic Map Inspecting Technology[J]. Geomatics and Information Science of Wuhan University, 2022, 47(12): 2038-2046. DOI: 10.13203/j.whugis20220683 |
[1] |
李展. 浅谈"问题地图"的识别和预防[J]. 测绘与空间地理信息, 2021, 44(8): 204-206 https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH202108054.htm
Li Zhan. Identification and Prevention of Incorrect Maps[J]. Geomatics & Spatial Information Technology, 2021, 44(8): 204-206 https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH202108054.htm
|
[2] |
韩权卫. 浅谈地图审核制度的重要意义[J]. 中国测绘, 2016(1): 12-15 https://www.cnki.com.cn/Article/CJFDTOTAL-ZCHZ201601004.htm
Han Quanwei. On the Significance of Map Inspection System[J]. China Surveying and Mapping. 2016(1): 12-15 https://www.cnki.com.cn/Article/CJFDTOTAL-ZCHZ201601004.htm
|
[3] |
中华人民共和国自然资源部. 中华人民共和国测绘法[Z]. 2017: 2022
Ministry of Natural Resources of the People?s Republic of China. Surveying and Mapping Law of the People?s Republic of China[Z]. 2017: 2022
|
[4] |
陈其宏. 地图审核目前存在的问题及解决办法[J]. 测绘与空间地理信息, 2013, 36(11): 215-218 https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201311068.htm
Chen Qihong. Map Audit the Current Problems and Solutions[J]. Geomatics & Spatial Information Technology, 2013, 36(11): 215-218 https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201311068.htm
|
[5] |
白敬辉. 地图审核在线审批系统分析与设计[J]. 测绘通报, 2019(7): 109-113 doi: 10.13474/j.cnki.11-2246.2019.0230
Bai Jinghui. Analysis and Design of Online Map Audit and Approval System[J]. Bulletin of Surveying and Mapping, 2019(7): 109-113 doi: 10.13474/j.cnki.11-2246.2019.0230
|
[6] |
白敬辉, 张文晖, 季绍鹏, 等. 基于送审地图类别的地图审核信息平台构建与应用服务[J]. 国土资源信息化, 2020(2): 31-36
Bai Jinghui, Zhang Wenhui, Ji Shaopeng, et al. Construction and Application Service of Map Audit Information Platform Based on Map Submission Category[J]. Land and Resources Informatization, 2020(2): 31-36
|
[7] |
任加新, 刘万增, 李志林, 等. 利用卷积神经网络进行"问题地图"智能检测[J]. 武汉大学学报·信息科学版, 2021, 46(4): 570-577 doi: 10.13203/j.whugis20190259
Ren Jiaxin, Liu Wanzeng, Li Zhilin, et al. Intelligent Detection of "Problematic Map" Using Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 570-577 doi: 10.13203/j.whugis20190259
|
[8] |
陈军, 刘万增, 武昊, 等. 智能化测绘的基本问题与发展方向[J]. 测绘学报, 2021, 50(8): 995-1005 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202108002.htm
Chen Jun, Liu Wanzeng, Wu Hao, et al. Smart Surveying and Mapping: Fundamental Issues and Research Agenda[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 995-1005 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202108002.htm
|
[9] |
陈军. DTM在改善遥感影象分类精度中的应用[J]. 武汉大学学报·信息科学版, 1984, 9(1): 69-81 http://ch.whu.edu.cn/article/id/5290
Chen Jun. The Application of DTM in Improving Classification Accuracy of Remote Sensing Imagery[J]. Geomatics and Information Science of Wuhan University, 1984, 9(1): 69-81 http://ch.whu.edu.cn/article/id/5290
|
[10] |
李小文, 王锦地, 胡宝新. 先验知识在遥感反演中的作用[J]. 中国科学: D辑, 1998, 28(1): 67-72 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199801011.htm
Li Xiaowen, Wang Jindi, Hu Baoxin. The Function of Prior Knowledge in Remote Sensing Inversion[J]. Science in China (Series D), 1998, 28(1): 67-72 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199801011.htm
|
[11] |
Lin Y Q, Lü F J, Zhu S H, et al. Large-Scale Image Classification: Fast Feature Extraction and SVM Training[C]//The 24th IEEE Conference on Computer Vision and Pattern Recognition, CO, USA, 2011
|
[12] |
Chandra M A, Bedi S S. Survey on SVM and Their Application in Image Classification[J]. International Journal of Information Technology, 2021, 13(5): 1-11
|
[13] |
Gontumukkala S S T, Godavarthi Y S V, Gonugunta B R R T, et al. Analysis of Image Classification Using SVM[C]//The 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India, 2021
|
[14] |
Fan J, Lee J, Lee Y. A Transfer Learning Architecture Based on a Support Vector Machine for Histopathology Image Classification[J]. Applied Sciences, 2021, 11(14): 6380
|
[15] |
Niu Z, Pan H, Han Q, et al. An Improved Classification Method Based on Random Forest for Medical Image[J]. Advances in Intelligent Systems and Computing, 2014, 213: 21-31
|
[16] |
詹曙, 姚尧, 高贺. 基于随机森林的脑磁共振图像分类[J]. 电子测量与仪器学报, 2013, 27(11): 1067-1072 https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY201311012.htm
Zhan Shu, Yao Yao, Gao He. Magnetic Resonance Image Classification of Brain Based on Random Forest[J]. Journal of Electronic Measurement and Instrument, 2013, 27(11): 1067-1072 https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY201311012.htm
|
[17] |
Wu J. Efficient HIK SVM Learning for Image Classification[J]. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 2012, 21(10): 4442-4453
|
[18] |
Li H, Di L P, Huang X F, et al. Laser Intensity Used in Classification of LiDAR Point Cloud Data[C]//IEEE International Geoscience & Remote Sensing Symposium, Boston, USA, 2008
|
[19] |
Brell M, Segl K, Guanter L, et al. Hyperspectral and LiDAR Intensity Data Fusion: A Framework for the Rigorous Correction of Illumination, Anisotropic Effects, and Cross Calibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2799-2810
|
[20] |
Liu W, Yamazaki F. Object-Based Shadow Extraction and Correction of High-Resolution Optical Satellite Images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(4): 1296-1302
|
[21] |
Luo R, Liao W, Zhang H, et al. Fusion of Hyperspectral and LiDAR Data for Classification of Cloud-Shadow Mixed Remote Sensed Scene[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8): 3768-3781
|
[22] |
Priem F, Canters F. Synergistic Use of LiDAR and APEX Hyperspectral Data for High-Resolution Urban Land Cover Mapping[J]. Remote Sensing, 2016, 8(10): 787
|
[23] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classification with Deep Convolutional Neural Networks[J]. Communications of the ACM, 2017, 60(6): 84-90
|
[24] |
Szegedy C, Liu W, Jia Y, et al. Going Deeper with Convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015
|
[25] |
He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition, Los Alamitos, CA, USA, 2016
|
[26] |
Chollet F. Xception: Deep Learning with Depthwise Separable Convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017
|
[27] |
Huang G, Liu Z, Van Der Maaten L, et al. Densely Connected Convolutional Networks[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017
|
[28] |
Hu J, Shen L, Sun G. Squeeze-and-Excitation Networks[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 2018
|
[29] |
Tan M, Le Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks[C]//International Conference on Machine Learning, PMLR, Long Beach, California, USA, 2019
|
[30] |
任福, 侯宛玥. 面向机器阅读的地图名称注记类别识别方法[J]. 武汉大学学报·信息科学版, 2020, 45(2): 273-280 doi: 10.13203/j.whugis20180503
Ren Fu, Hou Wanyue. Identification Method of Map Name Annotation Category for Machine Reading[J]. Geomatics and Information Science of Wuhan University. 2020, 45(2): 273-280 doi: 10.13203/j.whugis20180503
|
[31] |
杜凯旋, 王亮, 王勇, 等. 主动学习和卷积神经网络的地图图片识别方法[J]. 测绘科学, 2020, 45(7): 139-147
Du Kaixuan, Wang Liang, Wang Yong, et al. An Identification Method of Map Images Based on Activate Learning and Convolutional Neural Network[J]. Science of Surveying and Mapping, 2020, 45(7): 139-147
|
[32] |
艾廷华. 深度学习赋能地图制图的若干思考[J]. 测绘学报, 2021, 50(9): 1170-1182 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202109005.htm
Ai Tinghua. Some Thoughts on Deep Learning Enabling Cartography[J]. Acta Geodaetica et Cartographica Sinica, 2021: 50(9): 1170-1182 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202109005.htm
|
[33] |
周熙然, 李德仁, 薛勇, 等. 地图图像智能识别与理解: 特征、方法与展望[J]. 武汉大学学报·信息科学版, 2022, 47(5): 641-650 doi: 10.13203/j.whugis20210300
Zhou Xiran, Li Deren, Xue Yong, et al. Intelligent Map Image Recognition and Understanding: Representative Features, Methodology and Prospects[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 641-650 doi: 10.13203/j.whugis20210300
|
[34] |
Marcus G. Deep Learning: A Critical Appraisal[J]. arXiv, 2018, DOI: 1801.00631
|
[35] |
付东杰, 肖寒, 苏奋振, 等. 遥感云计算平台发展及地球科学应用[J]. 遥感学报. 2021, 25(1): 220-230 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202101014.htm
Fu Dongjie, Xiao Han, Su Fenzhen, et al. Remote Sensing Cloud Computing Platform Development and Earth Science Application[J]. National Remote Sensing Bulletin, 2021, 25(1): 220-230 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202101014.htm
|
[36] |
高凡, 乐鹏, 姜良存, 等. GeoCube: 面向大规模分析的多源对地观测时空立方体[J]. 遥感学报, 2022, 26(6): 1051-1066 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202206001.htm
Gao Fan, Yue Peng, Jiang Liangcun, et al. GeoCube: A Spatio-Temporal Cube Toward Massive and Multi-source EO Data Analysis[J]. National Remote Sensing Bulletin, 2022, 26(6): 1051-1066 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202206001.htm
|
[37] |
段文雪, 胡铭, 周琼, 等. 云计算系统可靠性研究综述[J]. 计算机研究与发展, 2020, 57(1): 102-123
Duan Wenxue, Hu Ming, Zhou Qiong, et al. Reliability in Cloud Computing System: A Review[J]. Journal of Computer Research and Development, 2020, 57(1): 102-123
|
[38] |
赵忠明, 高连如, 陈东, 等. 卫星遥感及图像处理平台发展[J]. 中国图象图形学报, 2019, 24(12): 2098-2110
Zhao Zhongming, Gao Lianru, Chen Dong, et al. Development of Satellite Remote Sensing and Image Processing Platform[J]. Journal of Image and Graphics, 2019, 24(12): 2098-2110
|
[39] |
李德仁, 姚远, 邵振峰. 智慧城市中的大数据[J]. 武汉大学学报·信息科学版, 2014, 39(6): 631-640 doi: 10.13203/j.whugis20140135
Li Deren, Yao Yuan, Shao Zhenfeng. Big Data in Smart City[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 631-640 doi: 10.13203/j.whugis20140135
|
[40] |
李乔, 郑啸. 云计算研究现状综述[J]. 计算机科学, 2011, 38(4): 32-37 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201104008.htm
Li Qiao, Zheng Xiao. Research Survey of Cloud Computing[J]. Computer Science, 2011, 38(4): 32-37 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201104008.htm
|
[1] | WANG Mengqi, LI Bozhao, WANG Zhenli, LIU Songcao, LIAO Cheng, CAI Zhongliang. An Automatic Cartography Framework Integrating Knowledge Graph and Large Language Model[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240266 |
[2] | ZHU Jun, LAI Jianbo, XIE Yakun, CHEN Peijing, SUN Wenjin. Knowledge-Guided Spatiotemporal Narrative 3D Visualization Method for the Bridge Construction Process[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1650-1660. DOI: 10.13203/j.whugis20230239 |
[3] | WU Jianhua, WEI Ning, ZHANG Yongsheng, ZHANG Yufei, CHEN Yuanyuan, TU Haowen, QIN Kun, LIN Hui. Linguistic-Spatial Intelligence: Opportunities and Challenges of Interdisciplinary Innovation[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240351 |
[4] | ZHENG Yu. The Knowledge System for Intelligent Cities[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 1-16. DOI: 10.13203/j.whugis20220366 |
[5] | ZHU Jun, FU Lin, LI Weilian, ZHENG Quanhong, HU Ya, GUO Yukun, HUANG Pengcheng, YANG Li. Knowledge-Guided Dynamic Representation Method of Landslide Disaster Scene[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1255-1262. DOI: 10.13203/j.whugis20200027 |
[6] | JIANG Jingchao, YU Jie, QIN Chengzhi, LIU Junzhi, LI Runkui, ZHU Liangjun, ZHU Axing. A Knowledge-driven Method for Intelligent Setting of Parameters in Hydrological Modeling[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 525-530. DOI: 10.13203/j.whugis20150044 |
[7] | ZHU Qing, MIAO Shuangxi, DING Yulin, QI Hua, HE Xiaobo, CAO Zhenyu. Knowledge-guided Gross Errors Detection and Elimination Approach of Landslide Monitoring Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 496-502. DOI: 10.13203/j.whugis20150125 |
[8] | ZHONG Heping, TIAN Zhen, WU Haoran, ZHANG Sen, TANG Jinsong. Parallel Quality-Guided Phase Unwrapping Algorithm in Shared Memory Environment[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 130-135. DOI: 10.13203/j.whugis20140728 |
[9] | ZHONG Heping, ZHANG Sen, TIAN Zhen, TANG Jinsong. A Fast Quality-guided Phase Unwrapping Algorithmin Heterogeneous Environment[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 756-760. DOI: 10.13203/j.whugis20130518 |
[10] | HE Yong, SHA Zongyao. Structure of Decision Support System Based on Intelligent Object[J]. Geomatics and Information Science of Wuhan University, 2004, 29(2): 116-119. |