MA Jun, JIANG Weiping, DENG Liansheng, ZHOU Boye. Estimation Method and Correlation Analysis for Noise in GPS Coordinate Time Series[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1451-1457. DOI: 10.13203/j.whugis20160543
Citation: MA Jun, JIANG Weiping, DENG Liansheng, ZHOU Boye. Estimation Method and Correlation Analysis for Noise in GPS Coordinate Time Series[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1451-1457. DOI: 10.13203/j.whugis20160543

Estimation Method and Correlation Analysis for Noise in GPS Coordinate Time Series

Funds: 

The National Science Foundation for Distinguished Young Scholars 41525014

the National Natural Science Foundation of China 41374033

More Information
  • Author Bio:

    MA Jun, PhD candidate, specializes in the noise analysis of GPS coordinates time series. E-mail: yangzhiqou.student@sina.com

  • Corresponding author:

    DENG Liansheng, PhD, lecturer. E-mail: dlseng_2000@whu.edu.cn

  • Received Date: July 10, 2017
  • Published Date: October 04, 2018
  • This paper firstly compares and analyzes the effect of maximum like lihood estimation (MLE) and least square variance estimation (LS-VCE) and minimum norm quadratic unbiased estimation (MINQUE) in the variance component estimation of GPS coordinate time series noise. After determining the minimum norm of two unbiased estimation method for the optimal estimation of noise variance, the correlations between the noises in each direction are analyzed by means of unitary linear regression, and the linear regression equations are determined.Experimental results show that, compared with the least squares variance component estimation method and maximum likelihood estimation method, MINQUE has a better estimation effect for the noise variances of GPS coordinate time series.In addition, the influence of noise on the estimation of motion parameters of the station can be reduced by using long span time series.Moreover, the same kind of noise in GPS coordinate time series of each direction has more significant correlation and the correlation between flicker noise in north and other directional flicker noises are better than that of white noises. The 40%-60% of the variance of the vertical noise can be explained by the noise variance in the horizontal direction, and north noise variance can explain the 60%-80% of change of the noise variance in east.The obtained linear regression equation has practical value.
  • [1]
    Williams S D P. CATS:GPS Coordinate Time Series Analysis Software[J]. GPS Solutions, 2008, 12(2):147-153 doi: 10.1007/s10291-007-0086-4
    [2]
    Williams S D P. The Effect of Coloured Noise on the Uncertainties of Rates Estimated from Geodetic Time Series[J]. Journal of Geodesy, 2003, 76(9):483-494 doi: 10.1007%2Fs00190-002-0283-4
    [3]
    Amiri-Simkooei A R. Noise in Multivariate GPS Position Time-Series[J]. Journal of Geodesy, 2009, 83(2):175-187 doi: 10.1007/s00190-008-0251-8
    [4]
    Niu X, Chen Q, Zhang Q, et al. Using Allan Variance to Analyze the Error Characteristics of GNSS Positioning[J]. GPS Solutions, 2014, 18(2):231-242 doi: 10.1007/s10291-013-0324-x
    [5]

    [6]
    赵长胜, 陶本藻.有色噪声作用下的卡尔曼滤波[J].武汉大学学报·信息科学版, 2008, 33(2):180-182, 207 http://ch.whu.edu.cn/CN/abstract/abstract1550.shtml

    Zhao Changsheng, Tao Benzao. Kalman Filtering of Linear System with Colored Noises[J]. Geomatics and Information Science of Wuhan University, 2008, 33(2):180-182, 207 http://ch.whu.edu.cn/CN/abstract/abstract1550.shtml
    [7]
    崔希璋, 於宗俦, 陶本藻, 等.广义测量平差[M].武汉:武汉大学出版社, 2009

    Cui Xizhang, Yu Zongchou, Tao Benzao, et al. Ge-neral Surveying Adjustment[M].Wuhan:Wuhan University Press, 2009
    [8]
    Mao A, Harrison C G A, Dixon T H. Noise in GPS Coordinate Time Series[J]. Journal of Geophysical Research:Solid Earth, 1999, 104(B2):2797-2816 doi: 10.1029/1998JB900033
    [9]
    Wang W, Zhao B, Wang Q, et al. Noise Analysis of Continuous GPS Coordinate Time Series for CMONOC[J]. Advances in Space Research, 2012, 49(5):943-956 doi: 10.1016/j.asr.2011.11.032
    [10]
    盛骤, 谢式千, 潘承毅.概率论与数理统计[M].北京:高等教育出版社, 2008

    Sheng Zhou, Xie Shiqian, Pan Chengyi. Probability Theory and Mathematical Statistics[M]. Beijing:Higher Education Press, 2008
  • Related Articles

    [1]LIU Meng, WANG Zheng-tao. Downward Continuation Iterative Regularization Solution Based on Quasi Optimal Regularization Factor Set[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230127
    [2]XU Xinqiang, ZHAO Jun. A Multi-Parameter Regularization Method in Downward Continuation for Airborne Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 956-963, 973. DOI: 10.13203/j.whugis20180335
    [3]BIAN Shaofeng, WU Zemin. Optimal Tikhonov Regularization Matrix and Its Application in GNSS Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 334-339. DOI: 10.13203/j.whugis20160474
    [4]CHEN Xin, ZHAI Guojun, BAO Jingyang, OUYANG Yongzhong, LU Xiuping, DENG Kailiang. Least Squares Collocation-Tikhonov Regularization Method for the Downward Continuation of Airborne Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 578-585. DOI: 10.13203/j.whugis20150728
    [5]ZENG Xiaoniu, LI Xihai, LIU Zhigang, YANG Xiaojun, LIU Daizhi. Regularization Method for Reduction to the Pole and Components Transformation of Magnetic Anomaly at Low Latitudes[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 388-394. DOI: 10.13203/j.whugis20140342
    [6]Huang Motao, Ouyang Yongzhong, Liu Min, ZHai Guojun, Deng Kailiang. Regularization of Point-Mass Model for Multi-Source Gravity Data Fusion Processing[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2): 170-175.
    [7]TANG Limin, ZHU Jianjun. Regularized Newton Iterative Algorithm for Poisson Model of Soft Clay Embankment Settlement[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 69-73.
    [8]NING Wei, TAO Huaxue, QING Xihong. Faster Difference Iterative Algorithm of Nonlinear Data Processing[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 617-620.
    [9]XU Tianhe, YANG Yuanxi. Robust Tikhonov Regularization Method and Its Applications[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 719-722.
    [10]Bai Yitong. Convergence Of Iterative Solution For Nonlinear Least Squares Adjustment[J]. Geomatics and Information Science of Wuhan University, 1991, 16(2): 92-95.
  • Cited by

    Periodical cited type(9)

    1. 张治豪,王振杰,张世美,王轲. 一种基于重心迭代法的单信标定位方法. 导航定位学报. 2024(06): 20-26 .
    2. Jianjun ZHU,Leyang WANG,Jun HU,Bofeng LI,Haiqiang FU,Yibin YAO. Recent Advances in the Geodesy Data Processing. Journal of Geodesy and Geoinformation Science. 2023(03): 33-45 .
    3. 张建霞,曲国庆,席换,王晖. 距离观测方程非线性平差的正则化共轭梯度法. 山东理工大学学报(自然科学版). 2022(02): 42-46 .
    4. 苏晓庆,徐工. 水下应答器定位的正则化数值算法研究. 工程勘察. 2022(02): 51-57 .
    5. 苏晓庆,徐工. 海底应答器定位的Landweber算法研究. 传感器与微系统. 2022(08): 29-31+36 .
    6. 袁兴明,孙振. 超定测距定位方程参数估计的松弛重心迭代法. 全球定位系统. 2021(01): 7-12 .
    7. 张建霞,曲国庆,席换,王晖. 一种改进的病态测距方程非线性估计的正则化数值迭代法. 山东科技大学学报(自然科学版). 2021(03): 18-25 .
    8. 王乐洋,李志强. 非线性模型精度评定的Bootstrap方法及其加权采样改进方法. 测绘学报. 2021(07): 863-878 .
    9. 杨文龙,薛树强,曲国庆,王薪普,王冠宇. 测距定位方程的多解性及粒子群搜索算法. 导航定位学报. 2020(03): 121-126 .

    Other cited types(5)

Catalog

    Article views (2110) PDF downloads (445) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return