HU Tao, ZHU Xinyan, GUO Wei, ZHANG Faming. A Moving Object Detection Method Combining Color and Depth data[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 276-282. DOI: 10.13203/j.whugis20160535
Citation: HU Tao, ZHU Xinyan, GUO Wei, ZHANG Faming. A Moving Object Detection Method Combining Color and Depth data[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 276-282. DOI: 10.13203/j.whugis20160535

A Moving Object Detection Method Combining Color and Depth data

Funds: 

The National Natural Science Foundation of China 41301517

the National Key Research and Development Program 2016YFB0502204

the Fundamental Research Funds for the Central Universities 413000010

Open Research Fund of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (16)03

More Information
  • Author Bio:

    HU Tao, PhD, al fellow, specializes in urban behavior analysis. E-mail: taohu07@hotmail.com

  • Corresponding author:

    GUO Wei, PhD, associate professor. E-mail: guowei-lmars@whu.edu.cn

  • Received Date: April 04, 2017
  • Published Date: February 04, 2019
  • Pedestrian detection is a hot topic and difficult problem in areas like computer vision and intelligent traffic. This paper researches on pedestrian detection in complex indoor space using depth sensors. In recent years, target detection methods based on RGB-Depth(RGBD) data mainly include background learning method and feature detecting operator method. However, the former method depends on the background knowledge of first tens of frames, and the number of frames decides the final detection accuracy. The latter takes plenty of time for computing, and being lacks of training samples may influence the detection result. Thus, this paper analyzes the complex scene features and integrates the color and depth information, and proposes a RGBD+ViBe (visual background extractor) background elimination method. The experiment results indicate that the detection accuracy of the proposed method is higher than the methods which only consider color or depth information and the RGBD+MoG method in foreground extraction.
  • [1]
    贾慧星, 章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报, 2007, 33(1):84-90 http://d.old.wanfangdata.com.cn/Periodical/zdhxb200701015

    Jia Huixing, Zhang Yujin. A Survey of Computer Vision Based Pedestrian Detection for Driver Assistance Systems[J]. Acta Automatica Sinica, 2007, 33(1):84-90 http://d.old.wanfangdata.com.cn/Periodical/zdhxb200701015
    [2]
    [3]
    Schiller I, Koch R. Improved Video Segmentation by Adaptive Combination of Depth Keying and Mixture-of-Gaussians[C]. Scandinavian Conference on Image Analysis, Ystad, Sweden, 2011 doi: 10.1007%2F978-3-642-21227-7_6.pdf
    [4]
    Fernandez-Sanchez E J, Diaz J, Ros E. Background Subtraction Based on Color and Depth Using Active Sensors[J]. Sensors, 2013, 13(7):8895-8915 doi: 10.3390/s130708895
    [5]
    Spinello L, Arras K O. People Detection in RGB-D Data[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Francisco, CA, USA, 2011 http://www2.informatik.uni-freiburg.de/~spinello/spinelloIROS11.pdf
    [6]
    Li Yanran, Yu Shiqi, Wu Shengyin. Pedestrian Detection in Depth Images Using Framelet Regularization[C]. IEEE International Conference on Computer Science and Automation Engineering (CSAE), Zhang Jiajie, China, 2012
    [7]
    Wang Ningbo, Gong Xiaojin, Liu Jilin. A New Depth Descriptor for Pedestrian Detection in RGB-D Images[C]. 21st International Conference on Pattern Recognition (ICPR), 2012 https://ieeexplore.ieee.org/document/6460965
    [8]
    Barnich O, Van Droogenbroeck M. ViBe:A Universal Background Subtraction Algorithm for Video Sequences[J]. Image Processing, IEEE Transactions on, 2011, 20(6):1709-1724 doi: 10.1109/TIP.2010.2101613
    [9]
    Brutzer S, Hoferlin B, Heidemann G. Evaluation of Background Subtraction Techniques for Video Surveillance[C]. 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, 2011 https://ieeexplore.ieee.org/document/5995508?arnumber=5995508
    [10]
    Finlayson G D, Schiele B, Crowley J L. Comprehensive Colour Image Normalization[C]. Computer Vision-ECCV'98, Freiburg, Germany, 1998
    [11]
    Horprasert T, Harwood D, Davis L S. A Statistical Approach for Real-time Robust Background Subtraction and Shadow Detection[C]. IEEE ICCV, Corfu, Greece, 1999 https://wenku.baidu.com/view/d26c9ff04693daef5ef73dcc.html
    [12]
    Klare B, Sarkar S. Background Subtraction in Varying Illuminations Using an Ensemble Based on an Enlarged Feature Set[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Miami, FL, USA, 2009 http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_CVPR_2009_WS/data/papers/03/03.pdf
    [13]
    Xie B, Ramesh V, Boult T. Sudden Illumination Change Detection Using Order Consistency[J]. Ima-ge and Vision Computing, 2004, 22(2):117-125 doi: 10.1016/j.imavis.2003.07.003
    [14]
    Tian Y L, Lu M, Hampapur A. Robust and Efficient Foreground Analysis for Real-time Video Surveillance[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, 2005 https://researcher.watson.ibm.com/researcher/files/us-smiyaza/CVPR05FGAnalysis.pdf
    [15]
    Noriega P, Bernier O. Real Time Illumination Invariant Background Subtraction Using Local Kernel Histograms[C]. BMVC, Edinburgh, 2006 https://wenku.baidu.com/view/67bce10a763231126edb1171.html
    [16]
    Youngbae H, Jun-Sik K, Inso K. Determination of Color Space for Accurate Change Detection[C]. IEEE International Conference on Image Processing, Atlanta, Georgia, USA, 2006 https://www.researchgate.net/publication/224057943_Determination_of_Color_Space_for_Accurate_Change_Detection
    [17]
    Dollár P, Wojek C, Schiele B, et al. Pedestrian Detection: A Benchmark[C]. IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA 2009 https://pdollar.github.io/files/papers/DollarCVPR09peds.pdf
    [18]
    Davis J W, Sharma V. Robust Background-Subtraction for Person Detection in Thermal Imagery[J]. IEEE Int Wkshp on Object Tracking and Classification Beyond the Visible Spectrum, 2004, 36(8):628-632 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026950449
    [19]
    Rakibe R S, Patil B D. Background Subtraction Algorithm Based Human Motion Detection[J]. International Journal of Scientific and Research Publications, 2013, 3(5):181-186 http://d.old.wanfangdata.com.cn/Periodical/wjfz2015020012
    [20]
    Munaro M, Basso F, Menegatti E. Tracking People Within Groups with RGB-Data[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Algare, Protugal, 2012 https://ieeexplore.ieee.org/document/6385772
    [21]
    Sho I, Fujiyoshi H. Real-time Human Detection Using Relational Depth Similarity Features[C]. Asian Conference on Computer Vision, Queenstown, New Zealand, 2010 http://www.vision.cs.chubu.ac.jp/04/pdf/PIA64.pdf
  • Related Articles

    [1]XIAO Tianyuan, LIU Pengcheng, AI Tinghua, LI Jingzhong. A Fractal Description and Multi-scale Expression Method of Fourier Information Metrics[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 119-125. DOI: 10.13203/j.whugis20180336
    [2]DIAN Yuanyong, YANG Guang, FANG Shenghui. Combining Fourier Spectrum Texture and Spectral Information for Land Cover Classification with High Resolution Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 362-368. DOI: 10.13203/j.whugis20140952
    [3]LIU Li, LI Jinling. Determination and Analysis of Station Parameters ofthe Chinese VLBI Network[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 262-266. DOI: 10.13203/j.whugis20120005
    [4]ZHANG Zhibin, WANG Guangli, LIU Xiang, TANG Zhenghong. Analysis of EOP Determination via Chinese VLBI Network[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 911-915.
    [5]WEI Erhu, ZHANG Qi. On Length of Day with 1985-2010 VLBI Observations[J]. Geomatics and Information Science of Wuhan University, 2012, 37(9): 1020-1023.
    [6]LIN Hui, LIANG Liang, DU Peijun, SUN Huasheng. Image Registration Based on Fourier-Mellin Transform[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 649-652.
    [7]WEI Erhu, LI Xuechuan, YI Hui, LIU Jingnan. On EOP Parameters Based on 2008 VLBI Observation Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(8): 988-990.
    [8]WEI Erhu, LIU Jingnan, PAN Peijing. On Data Processing with Last Three Years of VLBI Observation[J]. Geomatics and Information Science of Wuhan University, 2008, 33(12): 1275-1278.
    [9]LI Yingbing, XU Shaoquan, ZHANG Yongjun, ZHANG Xiaohong. The Application of Spectrum Analysis in GPS Auto-monitoring System[J]. Geomatics and Information Science of Wuhan University, 2001, 26(4): 343-348.
    [10]Zhang Genshou, Zhu Guorui. Analysis and Study of the Areal Shape on Map[J]. Geomatics and Information Science of Wuhan University, 1994, 19(1): 29-36.
  • Cited by

    Periodical cited type(7)

    1. 牟希农. 基于小波域马尔可夫随机场的医学影像图像提取实现研究. 贵州大学学报(自然科学版). 2020(01): 74-77 .
    2. 陈志坤,江俊君,姜鑫维,白露,蔡之华. 一种基于改进双边滤波的鲁棒高光谱遥感图像特征提取方法. 武汉大学学报(信息科学版). 2020(04): 504-510 .
    3. 郭利强,孟庆超. 基于多标签共享子空间学习和内核脊回归的空谱分类算法. 光子学报. 2020(05): 121-133 .
    4. 李玉,甄畅,石雪,赵泉华. 基于熵加权K-means全局信息聚类的高光谱图像分类. 中国图象图形学报. 2019(04): 630-638 .
    5. 曲海成,郭月,王媛媛. 基于优势集聚类和马尔科夫随机场的高光谱图像分类算法. 国土资源遥感. 2019(02): 24-31 .
    6. 职露,余旭初,邹滨,刘冰. 多层级二值模式的高光谱影像空-谱分类. 武汉大学学报(信息科学版). 2019(11): 1659-1666 .
    7. 韦春桃,赵平,肖博林,白风,李小勇,杨晚芸. 结合双树复小波纹理特征和MRF模型的遥感图像分割. 测绘通报. 2019(10): 40-45 .

    Other cited types(8)

Catalog

    Article views (1539) PDF downloads (279) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return