XIAO Tianyuan, LIU Pengcheng, AI Tinghua, LI Jingzhong. A Fractal Description and Multi-scale Expression Method of Fourier Information Metrics[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 119-125. DOI: 10.13203/j.whugis20180336
Citation: XIAO Tianyuan, LIU Pengcheng, AI Tinghua, LI Jingzhong. A Fractal Description and Multi-scale Expression Method of Fourier Information Metrics[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 119-125. DOI: 10.13203/j.whugis20180336

A Fractal Description and Multi-scale Expression Method of Fourier Information Metrics

Funds: 

The National Natural Science Foundation of China 41531180

The National Natural Science Foundation of China 41671448

the National Key Research and Development Program of China 2017YFB0503500

Independent Research Project of the Central Universities CCNU18CG010

Digital Mapping and Land Information Application Engineering Open Research Fund Project of Key Laboratory of the Ministry of Natural Resources ZRZYBWD201909

More Information
  • Author Bio:

    XIAO Tianyuan, master, specializes in map generalization and multi-scale representation. E-mail: 963664361@qq.com

  • Corresponding author:

    LIU Pengcheng, PhD, associate professor. E-mail: liupc@mail.ccnu.edu.cn

  • Received Date: December 05, 2018
  • Published Date: January 04, 2020
  • This paper presents a new method for describing the complexity of geographic line elements. Firstly, the Fourier series is used to transform the geographic line elements from the spatial domain to the frequency domain for analysis. Fourier expansions are performed on different geographic line elements to obtain different Fourier descriptors, then we use the method of setting the area threshold to control the deviation of the geographic elements before and after the Fourier expansion to a certain extent, so that the curve reduced by the Fourier descriptor can replace the original geographic line elements. Secondly, based on Shannon's information entropy theory, the amount of information of the fitted curve after Fourier expansion is calculated. Then, by combining the frequency domain with the fractal theory, the data of the amount of information is further processed based on the Head-tail data break and Koch's Two-Eighth Law, and the concept of the distribution index p is proposed. Finally, the distribution index and the square root model are combined, and the approximate expression of the distribution index of the map at different scales is obtained by the least squares method. We select the contour data of a region to conduct experiments, and experiment results show that the distribution index has a good expression effect on the complexity of geographic line elements at different scales, and can be applied to multi-scale expression of line elements.
  • [1]
    李舜酩, 李香莲.振动信号的现代分析技术与应用[M].北京:国防工业出版社, 2008

    Li Shunming, Li Xianglian. Modern Analysis Technology and Application of Vibration Signal[M]. Beijing: National Defense Industry Press, 2008
    [2]
    Gabor D. Theory of Communication. Part 1: The Analysis of Information[J]. Journal of the Institution of Electrical Engineers-Part Ⅲ: Radio and Communication Engineering, 2010, 93(26):429-441 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cs%2f0508119
    [3]
    刘慧敏, 邓敏, 徐震, 等.线要素几何信息量度量方法[J].武汉大学学报·信息科学版, 2014, 39(4):500-504 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201404024

    Liu Huimin, Deng Min, Xu Zhen, et al. Line Feature Geometric Information Measurement Method[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4):500-504 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201404024
    [4]
    刘鹏程, 罗静, 艾廷华, 等.基于线要素综合的形状相似性评价模型[J].武汉大学学报·信息科学版, 2012, 37(1):114-117 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201201028

    Liu Pengcheng, Luo Jing, Ai Tinghua, et al. Shape Similarity Evaluation Model Based on Line Feature Synthesis[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1):114-117 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201201028
    [5]
    刘鹏程, 艾廷华, 杨敏.基于傅里叶级数的等高线网络渐进式传输模型[J].测绘学报, 2012, 41(2):284-290 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201202022

    Liu Pengcheng, Ai Tinghua, Yang Min. Progressive Transmission Model of Contour Network Based on Fourier Series[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(2):284-290 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201202022
    [6]
    刘鹏程, 艾廷华, 毕旭.傅里叶级数支持下的等高线多尺度表达模型[J].武汉大学学报·信息科学版, 2013, 38(2):221-224 http://www.cnki.com.cn/Article/CJFDTotal-WHCH201302023.htm

    Liu Pengcheng, Ai Tinghua, Bi Xu. Contour Multi-scale Expression Model Supported by Fourier Series[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2):221-224 http://www.cnki.com.cn/Article/CJFDTotal-WHCH201302023.htm
    [7]
    Liu Pengcheng, Li Xingong, Liu Weibo, et al. Fourier-Based Multi-scale Representation and Progressive Transmission of Cartographic Curves on the Internet[J]. Cartography and Geographic Information Science, 2015, 43(5):454-468 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/15230406.2015.1088799
    [8]
    高义, 苏奋振, 周成虎, 等.基于分形的中国大陆海岸线尺度效应研究[J].地理学报, 2011, 66(3):331-339 http://d.old.wanfangdata.com.cn/Periodical/dlxb201103005

    Gao Yi, Su Fenzhen, Zhou Chenghu, et al. Research on Scale Effect of Coastline in Mainland China Based on Fractal[J]. Acta Geographica Sinica, 2011, 66(3):331-339 http://d.old.wanfangdata.com.cn/Periodical/dlxb201103005
    [9]
    Jiang B. Head/Tail Breaks for Visualization of City Structure and Dynamics[J]. Cities, 2015, 43(3):69-77 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=99b4f84c57dc76865323278764e338fd
    [10]
    Jiang B. Head/Tail Breaks: A New Classification Scheme for Data with a Heavy-Tailed Distribution[J]. Professional Geographer, 2013, 65(3):482-494 doi: 10.1080/00330124.2012.700499
    [11]
    Jiang B. The Fractal Nature of Maps and Mapping[J]. International Journal of Geographical Information Science, 2015, 29(1):159-174 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/13658816.2014.953165
    [12]
    Ma D, Jiang B. A Smooth Curve as a Fractal Under the Third Definition[J]. Cartographica, 2018, 53(3):203-210 doi: 10.3138/cart.53.3.2017-0032
    [13]
    Jiang B, Brandt S A. A Fractal Perspective on Scale in Geography[J]. ISPRS International Journal of Geo-Information, 2016, 5(6):95-106 doi: 10.3390/ijgi5060095
    [14]
    Jiang B, Ma D. How Complex is a Fractal? Head/tail Breaks and Fractional Hierarchy[J]. Journal of Geovisualization and Spatial Analysis, 2018, 2(1):6-11 doi: 10.1007/s41651-017-0009-z
    [15]
    Koch R. The 80/20 Principle: The Secret of Achieving More with Less[M]. New York: Doubleday Currency, 2001
    [16]
    李畅, 李桂娥, 朱昱佳.城市交通网络分形维数的不确定性估计、控制与分析[J].遥感学报, 2017, 21(1):74-83 http://d.old.wanfangdata.com.cn/Periodical/ygxb201701007

    Li Chang, Li Guie, Zhu Yujia. Uncertainty Estimation, Control and Analysis of Fractal Dimension of Urban Traffic Network[J]. Journal of Remote Sensing, 2017, 21(1):74-83 http://d.old.wanfangdata.com.cn/Periodical/ygxb201701007
    [17]
    汪超飞.云南省地震时空分布分形特征与地震活动性关系研究[D].昆明: 昆明理工大学, 2014

    Wang Chaofei.Study on the Relationship Between Fractal Characteristics of Seismic Temporal and Spatial Distribution and Seismic Activity in Yunnan Province[D]. Kunming: Kunming University of Science and Technology, 2014
    [18]
    吴亮, 陈慧, 王文军.制图综合开方根规律模型的建立[C].智能信息技术应用学会, 南昌, 2011

    Wu Liang, Chen Hui, Wang Wenjun. Establishment of a Comprehensive Root-Square Rule Model for Cartography[C]. International Conference on Ecological Protection of Lakes-Wetlands-Watershed and Application of 3S Technology (EPLWW3S 2011 V1), Nanchang, 2011
  • Related Articles

    [1]SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030
    [2]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [3]ZHAO Qile, TAO Jun, GUO Jing, CHEN Guo, XU Xiaolong, ZHANG Qiang, ZHANG Gaojian, XU Shengyi, LI Junqiang. Wide-Area Instantaneous cm-Level Precise Point Positioning: Method and Service System[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1058-1069. DOI: 10.13203/j.whugis20230202
    [4]YAN Zhongbao, ZHANG Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. DOI: 10.13203/j.whugis20220025
    [5]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [6]ZHANG Xiaohong, LIU Gen, GUO Fei, LI Xin. Model Comparison and Performance Analysis of Triple-frequency BDS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2124-2130. DOI: 10.13203/j.whugis20180078
    [7]ZHANG Xiaohong, CAI Shixiang, LI Xingxing, GUO Fei. Accuracy Analysis of Time and Frequency Transfer Based on Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 274-278.
    [8]ZHANG Xiaohong, GUO Fei, LI Xingxing, LIN Xiaojing. Study on Precise Point Positioning Based on Combined GPS and GLONASS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 9-12.
    [9]FU Jianhong, YUAN Xiuxiao. Influence of GPS Base Station on Accuracy of Positioning by Airborne Position and Orientation System[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 398-401.
    [10]Huang Shengxiang, Zhang Yan. Estimation of Accuracy Indicators for GPS Relative Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(1): 47-50.
  • Cited by

    Periodical cited type(22)

    1. 肖斌宸,叶飞,叶险峰,曾翔强. 电离层和地形复杂区域北斗/GNSS实时PPP性能及大气分析. 数据与计算发展前沿(中英文). 2025(01): 108-118 .
    2. 侯诚,史俊波,苟劲松,郭际明,邹进贵. 多路径误差对BDS-3变形监测精度的影响. 大地测量与地球动力学. 2024(02): 128-133 .
    3. 邓陈喜,姜维,王剑,蔡伯根. 基于北斗3号PPP-B2b信号的实时精密单点定位方法研究. 铁道学报. 2024(02): 63-73 .
    4. 于合理,孙晓东,贾赞杰,武智佳,代桃高. 限制环境下的GNSS精密授时方法研究综述. 海洋测绘. 2024(02): 46-50 .
    5. 许扬胤,任夏,明锋. 北斗三号PPP-B2b信号精密单点定位服务可用性分析. 全球定位系统. 2024(03): 10-19 .
    6. 肖恭伟,卞逸驰,何在民,广伟,尹翔飞,张润芝. 北斗三号PPP-B2b差分码偏差对UPPP解算的影响. 西安邮电大学学报. 2024(02): 1-10 .
    7. 宋伟伟,宋啟晟,何倩倩,龚晓鹏,辜声峰. 高精度电离层产品增强PPP-B2b定位性能分析. 武汉大学学报(信息科学版). 2024(09): 1517-1526 .
    8. 索世恒,韩昆,张永峰. 伽利略高精度服务产品与其全球定位性能评估. 地理空间信息. 2024(11): 100-104+121 .
    9. 孙爽,王敏,刘长建,孟欣,季锐. PPP-B2b服务钟差常数偏差特性及对定位的影响分析. 测绘科学. 2023(01): 8-15 .
    10. 郭文飞,朱萌萌,辜声峰,左鸿铭,陈金鑫. GNSS精密时频接收机时钟调控模型与参数设计方法. 武汉大学学报(信息科学版). 2023(07): 1126-1133 .
    11. 唐守普,吴文坛,夏振营,史进志,赵婉清,莫雁寒. 北斗三号PPP-B2b独立定位分析与应用. 河北省科学院学报. 2023(03): 61-69 .
    12. 赵淑洁,赵当丽,黄媛媛,纪元法. 基于PPP-B2b改正产品的北斗实时精密星历精度分析. 时间频率学报. 2023(02): 141-149 .
    13. 张润芝,何在民,马红皎,武建锋,广伟,肖恭伟. 北斗三号PPP-B2b信号跟踪环路的极点分布法设计. 时间频率学报. 2023(02): 161-169 .
    14. 姚夏,李志敏,吴如楠,毛飞宇,龚晓鹏. 北斗三号PPP-B2b信号时间同步性能分析. 导航定位学报. 2023(04): 84-89 .
    15. 史俊波,董新莹,欧阳晨皓,彭文杰,姚宜斌. 基于北斗三号PPP服务的快速静态和低动态定位性能分析. 大地测量与地球动力学. 2023(10): 997-1002 .
    16. 韩晓红,孙保琪,张喆,周红源,杨海彦,赵当丽,杨旭海. 基于北斗三号PPP-B2b轨道的实时精密共视时间传递. 导航定位与授时. 2023(04): 103-111 .
    17. 肖鹏,孙付平,张伦东,肖凯,商向永. 北斗三号PPP-B2b服务实时动态定位性能分析. 导航定位学报. 2023(05): 21-28 .
    18. 刘杨,曾安敏,郑翠娥,江鹏,刘焱雄. 广播式远程精密水下导航定位技术. 哈尔滨工程大学学报. 2023(11): 1987-1995 .
    19. 王林伟,周长江,余海锋,岳彩亚. 全球精密单点定位性能评估. 导航定位与授时. 2023(06): 86-92 .
    20. 赵泉涌,潘树国,缪巍巍,沈超,高旺,赵庆. PPP-B2b常数偏差实时改正后的多频单历元定位. 测绘科学. 2023(11): 61-68 .
    21. 彭松,刘建坤,张云龙,常丹,孙兆辉. 基于北斗三号远程监测系统的公路岩质边坡开挖变形分析. 科学技术与工程. 2022(33): 14898-14906 .
    22. 余德荧,金际航,刘一,边少锋. 基于北斗三号PPP-B2b信号的海上精密定位试验分析. 海洋测绘. 2022(06): 51-55+64 .

    Other cited types(9)

Catalog

    Article views (1638) PDF downloads (306) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return