WEI Erhu, ZHANG Qi. On Length of Day with 1985-2010 VLBI Observations[J]. Geomatics and Information Science of Wuhan University, 2012, 37(9): 1020-1023.
Citation: WEI Erhu, ZHANG Qi. On Length of Day with 1985-2010 VLBI Observations[J]. Geomatics and Information Science of Wuhan University, 2012, 37(9): 1020-1023.

On Length of Day with 1985-2010 VLBI Observations

Funds: 国家863计划资助项目(2008AA12Z308);;国家自然科学基金资助项目(40974003)
More Information
  • Received Date: June 10, 2012
  • Published Date: September 04, 2012
  • The analysis of ΔLOD is of profound significance on climate forecasting,disaster prevention,deep space exploration,geodesy and other fields.With extremely high precision and angular resolution,VLBI plays the irreplaceable role on the analysis of the changes of the length of day.Based on this,the ΔLOD sequence and its precision are estimated from VLBI observations during 1985-2010 with comparison with the results published by IVS.The half-month,month,half-year,year periods and longer periods of the changes of ΔLOD is extracted with FFT and wavelet analysis.At the same time,the integration curve map of the ΔLOD is made to analyze the seasonal and long-term changes of earth rotation.At last,the causes of the changes of LOD are analyzed.
  • Related Articles

    [1]XU Tianyang, ZHANG Zhetao, HE Xiufeng, YUAN Haijun. A Multi-cycle Slip Detection and Repair Method for Single-Frequency GNSS Receiver[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 465-472. DOI: 10.13203/j.whugis20210009
    [2]IA Lei, LAI Zulong, MEI Changsong, JIAO Chenchen, JIANG Ke, PAN Xiong. An Improved Algorithm for Real-Time Cycle Slip Detection and Repair Based on TurboEdit Epoch Difference Model[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 920-927. DOI: 10.13203/j.whugis20190287
    [3]LI Leilei, YANG Sheng, LIU Jingbin, SUN Hongxing, DING Xuewen, WU Yu, REN Chunhua, PENG Liang, XIE Changcheng. An INS-Aided Cycle Slip Detection and Repair Method Based on IF and WL Combinations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2183-2190. DOI: 10.13203/j.whugis20180185
    [4]SU Mingkun, ZHENG Jiansheng, CHEN Liwen, FANG Weidong. Cycle Slip Detection and Repair SET Method Using GPS Dual-frequency Un-differenced Observations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 207-212. DOI: 10.13203/j.whugis20150116
    [5]ZOU Xuan, LI Zongnan, CHEN Liang, SONG Weiwei, WANG Cheng, TANG Weiming. A New Cycle Slip Detection and Repair Method Based on Epoch Difference for a Single-frequency GNSS Receiver[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1406-1410. DOI: 10.13203/j.whugis20150805
    [6]CAI Chenglin, WANG Liangliang, LIU Changsheng, LI Gang, QIN Yi, DENG Honggao. The Cycle-Slip Detection and Repair of BDS Based on Improved TurboEdit Algorithm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1632-1637. DOI: 10.13203/j.whugis20140602
    [7]FAN Lihong, WANG Li, ZHANG Ming, ZHENG Zengji. A Combination of MW and Second-order Time-difference PhaseIonospheric Residual for Cycle Slip Detection and Repair[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 790-794. DOI: 10.13203/j.whugis20130521
    [8]CAO Xinyun, WANG Jian. Cycle-slip Detection and Repair Using GPS Triple-frequencyUn-differenced Observations[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 450-456. DOI: 10.13203/j.whugis20120184
    [9]YI Zhonghai, ZHU Jianjun, CHEN Yongqi, DAI Wujiao. Cycle-Slip Detection and Correction Algorithm for Real-Time PPP[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1314-1319.
    [10]HAN Baomin, OU Jikun, CHAI Yanju. Detecting and Repairing the Gross Errors and Cycle Slips by QUAD Method[J]. Geomatics and Information Science of Wuhan University, 2002, 27(3): 246-250.

Catalog

    Article views (920) PDF downloads (451) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return