NIE Lei, SHU Hong, LIU Yan. Interpolation of Monthly Average Temperature by Using (Mixed) Geographically Weighted Regression Kriging in the Complex Terrain Region[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1553-1559. DOI: 10.13203/j.whugis20160433
Citation: NIE Lei, SHU Hong, LIU Yan. Interpolation of Monthly Average Temperature by Using (Mixed) Geographically Weighted Regression Kriging in the Complex Terrain Region[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1553-1559. DOI: 10.13203/j.whugis20160433

Interpolation of Monthly Average Temperature by Using (Mixed) Geographically Weighted Regression Kriging in the Complex Terrain Region

Funds: 

The National Key Research and Development Plan in 13th Five-year 2017YFB0503604

the National Natural Science Foundation of China 41331175

the Fundamental Research Funds for the Central Universities 2042016kf0176

the Fundamental Research Funds for the Central Universities 2042016kf1035

More Information
  • Author Bio:

    NIE Lei, postgraduate, specializes in remote sensing data assimilation. E-mail: nielei1993@foxmail.com

  • Corresponding author:

    SHU Hong, professor. E-mail:shu_hong@whu.edu.com

  • Received Date: December 28, 2017
  • Published Date: October 04, 2018
  • Based on the complex topographical features and sparse uneven observation sites in Sichuan Province, terrain factors (slope and aspect) and vegetation index were introduced in this paper. The method of (mixed) geographically weighted regression kriging ((m)GWRK) which took into account the non-stationary of spatial relationship was adopted to study the interpolation method of monthly mean temperature and the precision analysis of the estimation results. In different seasons and different regions, the estimation results of (m)GWRK and regression Kriging (RK) based on global regression were compared. The results indicate that the coefficient of determination(R2) of regression relationship of RK, GWRK and mGWRK are 0.795, 0.922 and 0.911, respectively, and root meansquare error of these three methods are 0.83℃, 0.64℃, 0.55℃, respectively. This implies (m)GWRK is better than RK in ability to interpret the target variable and estimation accuracy. Compared with RK, the improvements of (m)GWRK on estimating monthly average temperature have the characteristics of seasonal and regional differences. The improvement is more significant in winter half year than in summer half year. And in northwest and southwest Sichuan, where topography changes acutely, the improvement is greater than in basin where topography changes gently.
  • [1]
    鲍艳松, 李紫甜, 王冬梅, 等.基于FY3热红外数据的地表温度反演方法研究[J].农业机械学报, 2014, 45(6):266-274 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201406041

    Bao Yansong, Li Zitian, Wang Dongmei, et al. Retrieval of Land Surface Temperature from FY3 Infrared Imageries[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6):266-274 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201406041
    [2]
    谢云峰, 张树文.基于数字高程模型的复杂地形下的黑龙江平均气温空间插值[J].中国农业气象, 2007, 28(2):205-211 doi: 10.3969/j.issn.1000-6362.2007.02.023

    Xie Yunfeng, Zhang Shuwen. Spatial Interpolation of Mean Temperature of Heilongjiang Province Based on Digital Elevation Model[J]. Chinese Journal of Agrometeorology, 2007, 28(2):205-211 doi: 10.3969/j.issn.1000-6362.2007.02.023
    [3]
    游松财, 李军.海拔误差影响气温空间插值误差的研究[J].自然资源学报, 2005, 20(1):140-144 doi: 10.3321/j.issn:1000-3037.2005.01.020

    You Songcai, Li Jun. Study on Error and Its Pervasion of Temperature Estimation[J]. Journal of Natural Resources, 2005, 20(1):140-144 doi: 10.3321/j.issn:1000-3037.2005.01.020
    [4]
    李莎, 舒红, 徐正全.利用时空Kriging进行气温插值研究[J].武汉大学学报·信息科学版, 2012, 37(2):237-241 http://ch.whu.edu.cn/CN/Y2012/V37/I2/237

    Li Sha, Shu Hong, Xu Zhengquan. Interpolation of Temperature Based on Spatial-temporal Kriging[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2):237-241 http://ch.whu.edu.cn/CN/Y2012/V37/I2/237
    [5]
    蔡迪花, 郭铌, 李崇伟.基于DEM的气温插值方法研究[J].干旱气象, 2009, 27(1):10-17 doi: 10.3969/j.issn.1006-7639.2009.01.002

    Cai Dihua, Guo Ni, Li Chongwei. Interpolation of Air Temperature Based on DEM over Eastern Region of Gansu[J]. Journal of Arid Meteorology, 2009, 27(1):10-17 doi: 10.3969/j.issn.1006-7639.2009.01.002
    [6]
    Szymanowski M, Kryza M. The Role of Auxiliary Variables in Deterministic and Deterministic-Stochastic Spatial Models of Air Temperature in Poland[J]. Pure & Applied Geophysics, 2017, 174(2):1-27 https://core.ac.uk/display/81617041
    [7]
    许民, 王雁, 周兆叶, 等.长江流域逐月气温空间插值方法的探讨[J].长江流域资源与环境, 2012, 21(3):327-334 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200349974

    Xu Min, Wang Yan, Zhou Zhaoye, et al. Discussion of Methods of Spatial Interpolation for Monthly Temperature Data in the Yangtze River Basin[J]. Resources & Environment in the Yangtze Basin, 2012, 21(3):327-334 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200349974
    [8]
    覃文忠.地理加权回归基本理论与应用研究[D].上海: 同济大学, 2007 http://cdmd.cnki.com.cn/Article/CDMD-10247-2007222843.htm

    Tan Wenzhong. The Basic Theoretics and Application Research on Geographically Weighted Regression[D]. Shanghai: Tongji University, 2007 http://cdmd.cnki.com.cn/Article/CDMD-10247-2007222843.htm
    [9]
    杨顺华, 张海涛, 郭龙, 等.基于回归和地理加权回归Kri-ging的土壤有机质空间插值[J].应用生态学报, 2015, 26(6):1649-1656 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201506007

    Yang Shunhua, Zhang Haitao, Guo Long, et al. Spatial Interpolation of Soil Organic Matter Using Regression Kriging and Geographically Weighted Regression Kriging[J]. Chinese Journal of Applied Ecology, 2015, 26(6):1649-1656 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201506007
    [10]
    Kumar S, Lal R, Liu D. A Geographically Weighted Regression Kriging Approach for Mapping Soil Organic Carbon Stock[J]. Geoderma, 2012, 189-190(6):627-634 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0228292612
    [11]
    Szymanowski M, Kryza M, Spallek W. Regression-based Air Temperature Spatial Prediction Models:An Example from Poland[J]. Meteorologische Zeitschrift, 2013, 22(5):577-585 doi: 10.1127/0941-2948/2013/0440
    [12]
    Donkelaar A V, Martin R V, Spurr R J D, et al. High-Resolution Satellite-Derived PM2.5 from Optimal Estimation and Geographically Weighted Regression over North America[J].Environmental Science & Technology, 2015, 49(17):10482-10491 doi: 10.1021/acs.est.5b02076
    [13]
    张国峰, 杨立荣, 瞿明凯, 等.基于地理加权回归克里格的日平均气温插值[J].应用生态学报, 2015, 26(5):1531-1536 http://d.old.wanfangdata.com.cn/Periodical/yystxb201505032

    Zhang Guofeng, Yang Lirong, Qu Mingkai, et al. Interpolation of Daily Mean Temperature by Using Geographically Weighted Regression-Kriging[J]. Chinese Journal of Applied Ecology, 2015, 26(5):1531-1536 http://d.old.wanfangdata.com.cn/Periodical/yystxb201505032
    [14]
    马小彬.四川年鉴, 2015[M].成都:四川年鉴社, 2015

    Ma Xiaobin. Sichuan Yearbook, 2015[M]. Chengdu:Sichuan Yearbook Press, 2015
    [15]
    Hengl T, Heuvelink G B M, Rossiter D G. About Regression-Kriging:From Equations to Case Studies[J]. Computers & Geosciences, 2007, 33(10):1301-1315 https://www.sciencedirect.com/science/article/pii/S0098300407001008
    [16]
    Brunsdon C, Fotheringham S, Charlton M. Geographically Weighted Regression:A Method for Exploring Spatial Nonstationarity[J]. Geographical Analysis, 1996, 28(4):281-298 doi: 10.1111/j.1538-4632.1996.tb00936.x/full
    [17]
    Brunsdon C, Fotheringham S, Charlton M. Geographically Weighted Regression[J].Journal of the Royal Statistical Society, 1998, 47(3):431-443 http://cdmd.cnki.com.cn/Article/CDMD-10731-1014262511.htm
    [18]
    Brunsdon C, Fotheringham A S, Charlton M. Some Notes on Parametric Significance Tests for Geographically Weighted Regression[J]. Journal of Regional Science, 1999, 39(3):497-524 doi: 10.1111/0022-4146.00146
    [19]
    汤国安, 杨昕. ArcGIS地理信息系统空间分析实验教程[M]. 2版.北京:科学出版社, 2012

    Tang Guoan, Yang Xin. ArcGIS Geographic Information System Spatial Analysis the Experimental Tutorial[M]. 2nd ed Beijing:Science Press, 2012
    [20]
    胡丹桂, 舒红, 胡泓达.时空CoKriging的变异函数建模[J].华中师范大学学报(自然科学版), 2015, 49(4):596-602 doi: 10.3969/j.issn.1000-1190.2015.04.024

    Hu Dangui, Shu Hong, Hu Hongda.Varlogram Modeling in Space-time CoKriging[J]. Journal of Central China Normal University(Natural Sciences), 2015, 49(4):596-602 doi: 10.3969/j.issn.1000-1190.2015.04.024
    [21]
    张建平, 刘淑珍.金沙江干热河谷区攀枝花市土地退化初探[J].中国沙漠, 1998, 18(2):149-153 doi: 10.3321/j.issn:1000-694X.1998.02.009

    Zhang Jianping, Liu Shuzhen. A Preliminary Study on Land Degradation in Panzhihua City on Jinsha River Day-Hot Valley Area[J]. Journal of Desert Research, 1998, 18(2):149-153 doi: 10.3321/j.issn:1000-694X.1998.02.009

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return