LI Xin, GUO Jiming, ZHANG Di, YANG Fei. An Algorithm of GPS Single-Epoch Kinematic Positioning Based on Doppler Velocimetry[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1036-1041. DOI: 10.13203/j.whugis20160247
Citation: LI Xin, GUO Jiming, ZHANG Di, YANG Fei. An Algorithm of GPS Single-Epoch Kinematic Positioning Based on Doppler Velocimetry[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1036-1041. DOI: 10.13203/j.whugis20160247

An Algorithm of GPS Single-Epoch Kinematic Positioning Based on Doppler Velocimetry

Funds: 

The National Natural Science Foundation of China 41474004

The National Natural Science Foundation of China 41604019

the Open Fund of Key Laboratory of Precise Engineering and Industry Surveying of National Administration of Surveying, Mapping and Geoinformation PF2013-10

More Information
  • Author Bio:

    LI Xin, PhD, specializes in the GNSS high precision data processing. E-mail: 2011202140067@whu.edu.cn

  • Received Date: November 08, 2016
  • Published Date: July 04, 2018
  • Due to the less prior constraint information, the ambiguity resolution and positioning performance are not very good in the GPS single-epoch kinematic positioning parameter estimation. Thus, a new method of GPS single-epoch kinematic positioning based on Doppler velocimetry is proposed in this paper. The coordinate initialization using the velocity information is firstly discussed, the current epoch's coordinate of the moving vehicle is predicted with the priori coordinate and velocity information. Compared with the conventional method of single point positioning (SPP) coordinate initialization, it is expected to obtain higher precision, but poorer robustness as well. Thus, the corresponding strategy for single-epoch ambiguity resolution is further introduced so as to improve the positioning performance of the method in this paper. Contrasting with the conventional algorithm of GPS single-epoch kinematic positioning, the experimental results show that, the method proposed can improve the precision of the float ambiguity, the final ambiguity fixed rate and the average positioning accuracy, especially in the case that, the number of GPS satellites is not sufficient or the geometric structure of the satellites is not very good.
  • [1]
    陈永奇.单历元GPS变形监测数据处理方法的研究[J].武汉测绘科技大学学报, 1998, 4(4):324-328 http://www.cqvip.com/Main/Detail.aspx?id=3290759

    Chen Yongqi. Development of the Methodology for Single Epoch GPS Deformation Monitoring[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1998, 4(4):324-328 http://www.cqvip.com/Main/Detail.aspx?id=3290759
    [2]
    Teunissen P J G, Odolinski R, Odijk D. Instanta-neous BeiDou+GPS RTK Positioning with High Cut-off Elevation Angles[J]. Journal of Geodesy, 2014, 88(4):335-350 doi: 10.1007/s00190-013-0686-4
    [3]
    Parkins A. Increasing GNSS RTK Availability with a New Single-Epoch Batch Partial Ambiguity Resolution Algorithm[J]. GPS Solutions, 2011, 15(4):391-402 doi: 10.1007/s10291-010-0198-0
    [4]
    Wu Z, Bian S, Ji B, et al. Short Baseline GPS Multi-frequency Single-Epoch Precise Positioning:Utilizing a New Carrier Phase Combination Method[J]. GPS Solutions, 2016, 20(3):373-384 doi: 10.1007/s10291-015-0447-3
    [5]
    Wang L, Feng Y, Guo J. Reliability Control of Single-Epoch RTK Ambiguity Resolution[J]. GPS Solutions, 2016, 21(2):1-14 doi: 10.1007/s10291-016-0550-0
    [6]
    陈远, 于兴旺, 叶聪云, 等. GPS多普勒观测值测速的精度分析[J].全球定位系统, 2008, 33(1):31-34 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chtb201303003

    Chen Yuan, Yu Xingwang, Ye Congyun, et al. Analysis of Single-Point GPS Velocity Determination with Doppler[J]. GNSS World of China, 2008, 33(1):31-34 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chtb201303003
    [7]
    肖云, 孙中苗, 程广义.利用GPS多普勒观测值精确确定运动载体的速度[J].武汉测绘科技大学学报, 2000, 25(2):113-118 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb200002005

    Xiao Yun, Sun Zhongmiao, Cheng Guangyi. Precise Determination of Velocity for Airborne Gravimetry Using the GPS Doppler Observations[J]. Journal of Wuhan Technical University of Surveying and Mapping, 2000, 25(2):113-118 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb200002005
    [8]
    Kubo N, Pullen S. Instantaneous RTK Positioning Based on User Velocity Measurements[C]. The 21st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2008), Savannah, GA, 2008
    [9]
    Kubo N. Advantage of Velocity Measurements on Instantaneous RTK Positioning[J]. GPS Solutions, 2009, 13(4):271-280 doi: 10.1007/s10291-009-0120-9
    [10]
    杨元喜.自适应动态导航定位[M].北京:测绘出版社, 2006

    Yang Yuanxi. Adaptive Navigation and Kinematic Positioning[M].Beijing:Surveying and Mapping Press, 2006
    [11]
    Zhao S, Cui X, Guan F, et al. A Kalman Filter-Based Short Baseline RTK Algorithm for Single-Frequency Combination of GPS and BDS[J]. Sensors, 2014, 14(8):15415-15433 doi: 10.3390/s140815415
    [12]
    Dai F, Mao X. BDS/GPS Dual Systems Positioning Based on Kalman Filter in Urban Canyon Environments[C]. The 17th International IEEE Conference on Intelligent Transportation Systems, Qingdao, China, 2014
    [13]
    Teunissen P J G. The Least-Squares Ambiguity Decorrelation Adjustment:A Method for Fast GPS Integer Ambiguity Estimation[J]. Journal of Geodesy, 1995, 70(1-2):65-82 doi: 10.1007/BF00863419
    [14]
    Teunissen P J G. An Optimality Property of the Integer Least-Squares Estimator[J]. Journal of Geodesy, 1999, 73(11):587-593 doi: 10.1007/s001900050269
    [15]
    Teunissen P J G, Dennis O. Ambiguity Dilution of Precision: Definition, Properties and Application[C]. ION GPS 1997, Kansas City, MO, 1997
  • Related Articles

    [1]ZHANG Fan, CHAI Hongzhou, WANG Min, XIAO Guorui, ZHANG Qiankun, DU Zhenqiang. Undifferenced and Uncombined PPP Ambiguity Resolution Combined with GPS/GLONASS Triple-Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1900-1910. DOI: 10.13203/j.whugis20220315
    [2]SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030
    [3]SONG Weiwei, ZHAO Xinke, LOU Yidong, SUN Weibin, ZHAO Zhengyu. Performance Evaluation of BDS-3 PPP-B2b Service[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 408-415. DOI: 10.13203/j.whugis20200686
    [4]YAN Zhongbao, ZHANG Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. DOI: 10.13203/j.whugis20220025
    [5]GU Shengfeng, DAI Chunqi, HE Chengpeng, FANG Lizhe, WANG Zihao. Analysis of Semi-tightly Coupled Multi-GNSS PPP-RTK/VIO for Vehicle Navigation in Urban Areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1852-1861. DOI: 10.13203/j.whugis20210615
    [6]YAO Yibin, FENG Xinying, PENG Wenjie, LIU Lei. Local Atmosphere Augmentation Based on CORS for Real-Time PPP[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1739-1748. DOI: 10.13203/j.whugis20180131
    [7]SONG Chao, HAO Jinming. Instantaneous Re-convergence of Kinematic PPP by the Use of Relationship Between Multiple Receiver Ambiguity[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 595-599, 690. DOI: 10.13203/j.whugis20140747
    [8]GUO Fei, ZHANG Xiaohong. Processing Capacity for GPS Data with Clock Slip Using Online PPP Services[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1333-1336.
    [9]TU Rui, HUANG Guanwen, ZHANG Qin, WANG Li. The Research of Dual Frequency Solution Method for Single Frequency Precise Point Positioning(PPP) Based on SEID Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1187-1190.
    [10]ZHAO Jianhu, WANG Shengping, ZHANG Hongmei, WEN Weidong. Long-Distance and On-the-Fly GPS Tidal Level Measurement Based on GPS PPK/PPP[J]. Geomatics and Information Science of Wuhan University, 2008, 33(9): 910-913.
  • Cited by

    Periodical cited type(13)

    1. 冯晓亮,陈欢,李厚芝. 不同观测环境中的多模GNSS数据质量自动化检测方法. 测绘工程. 2024(06): 56-61 .
    2. 刘嘉伟,孙保琪,韩蕊,张喆,王侃,袁海波,杨旭海. GNSS多系统RTK授时性能分析. 导航定位与授时. 2023(03): 49-58 .
    3. 王浩浩,郝明,庄文泉. GNSS实时卫星钟差估计在地震监测中的应用. 导航定位与授时. 2023(03): 108-116 .
    4. 周长江,余海锋,王林伟,雷云平,岳彩亚. 无频间钟偏差改正的BDS-2三频非组合PPP随机模型优化. 测绘通报. 2023(12): 164-168 .
    5. 潘丽静,刘翔,夏川茹,王雷雷. GNSS精密卫星钟差实时估计与分析. 城市勘测. 2021(06): 73-76 .
    6. 郭磊,王甫红,桑吉章,张万威. 一种新的利用历元间位置变化量约束的GNSS导航算法. 武汉大学学报(信息科学版). 2020(01): 21-27 .
    7. 陶钧,张柔. GPS/BeiDou/Galileo/GLONASS实时精密卫星钟差估计. 测绘地理信息. 2020(03): 102-106 .
    8. 黄观文,王浩浩,谢威,曹钰. GNSS实时卫星钟差估计技术进展. 导航定位与授时. 2020(05): 1-9 .
    9. 张浩,赵兴旺,陈佩文,谢毅. GPS/BDS卫星钟差融合解算模型及精度分析. 合肥工业大学学报(自然科学版). 2020(09): 1192-1196 .
    10. 叶珍,李浩军. GNSS卫星钟差估计与结果分析. 导航定位与授时. 2019(03): 88-94 .
    11. 盛剑锋,张彩红,谭凯. 一种全球导航卫星系统钟差估计优化方案的量化研究. 科学技术与工程. 2019(14): 14-21 .
    12. 王尔申,赵珩,曲萍萍,庞涛,孙军. 基于拉格朗日插值法的卫星导航空间信号精度评估算法. 沈阳航空航天大学学报. 2019(04): 43-48 .
    13. 李云,崔文刚. 精密单点定位技术发展及应用. 科学技术与工程. 2019(27): 1-11 .

    Other cited types(10)

Catalog

    Article views PDF downloads Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return