LI Xin, GUO Jiming, ZHANG Di, YANG Fei. An Algorithm of GPS Single-Epoch Kinematic Positioning Based on Doppler Velocimetry[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1036-1041. DOI: 10.13203/j.whugis20160247
Citation: LI Xin, GUO Jiming, ZHANG Di, YANG Fei. An Algorithm of GPS Single-Epoch Kinematic Positioning Based on Doppler Velocimetry[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1036-1041. DOI: 10.13203/j.whugis20160247

An Algorithm of GPS Single-Epoch Kinematic Positioning Based on Doppler Velocimetry

Funds: 

The National Natural Science Foundation of China 41474004

The National Natural Science Foundation of China 41604019

the Open Fund of Key Laboratory of Precise Engineering and Industry Surveying of National Administration of Surveying, Mapping and Geoinformation PF2013-10

More Information
  • Author Bio:

    LI Xin, PhD, specializes in the GNSS high precision data processing. E-mail: 2011202140067@whu.edu.cn

  • Received Date: November 08, 2016
  • Published Date: July 04, 2018
  • Due to the less prior constraint information, the ambiguity resolution and positioning performance are not very good in the GPS single-epoch kinematic positioning parameter estimation. Thus, a new method of GPS single-epoch kinematic positioning based on Doppler velocimetry is proposed in this paper. The coordinate initialization using the velocity information is firstly discussed, the current epoch's coordinate of the moving vehicle is predicted with the priori coordinate and velocity information. Compared with the conventional method of single point positioning (SPP) coordinate initialization, it is expected to obtain higher precision, but poorer robustness as well. Thus, the corresponding strategy for single-epoch ambiguity resolution is further introduced so as to improve the positioning performance of the method in this paper. Contrasting with the conventional algorithm of GPS single-epoch kinematic positioning, the experimental results show that, the method proposed can improve the precision of the float ambiguity, the final ambiguity fixed rate and the average positioning accuracy, especially in the case that, the number of GPS satellites is not sufficient or the geometric structure of the satellites is not very good.
  • [1]
    陈永奇.单历元GPS变形监测数据处理方法的研究[J].武汉测绘科技大学学报, 1998, 4(4):324-328 http://www.cqvip.com/Main/Detail.aspx?id=3290759

    Chen Yongqi. Development of the Methodology for Single Epoch GPS Deformation Monitoring[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1998, 4(4):324-328 http://www.cqvip.com/Main/Detail.aspx?id=3290759
    [2]
    Teunissen P J G, Odolinski R, Odijk D. Instanta-neous BeiDou+GPS RTK Positioning with High Cut-off Elevation Angles[J]. Journal of Geodesy, 2014, 88(4):335-350 doi: 10.1007/s00190-013-0686-4
    [3]
    Parkins A. Increasing GNSS RTK Availability with a New Single-Epoch Batch Partial Ambiguity Resolution Algorithm[J]. GPS Solutions, 2011, 15(4):391-402 doi: 10.1007/s10291-010-0198-0
    [4]
    Wu Z, Bian S, Ji B, et al. Short Baseline GPS Multi-frequency Single-Epoch Precise Positioning:Utilizing a New Carrier Phase Combination Method[J]. GPS Solutions, 2016, 20(3):373-384 doi: 10.1007/s10291-015-0447-3
    [5]
    Wang L, Feng Y, Guo J. Reliability Control of Single-Epoch RTK Ambiguity Resolution[J]. GPS Solutions, 2016, 21(2):1-14 doi: 10.1007/s10291-016-0550-0
    [6]
    陈远, 于兴旺, 叶聪云, 等. GPS多普勒观测值测速的精度分析[J].全球定位系统, 2008, 33(1):31-34 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chtb201303003

    Chen Yuan, Yu Xingwang, Ye Congyun, et al. Analysis of Single-Point GPS Velocity Determination with Doppler[J]. GNSS World of China, 2008, 33(1):31-34 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chtb201303003
    [7]
    肖云, 孙中苗, 程广义.利用GPS多普勒观测值精确确定运动载体的速度[J].武汉测绘科技大学学报, 2000, 25(2):113-118 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb200002005

    Xiao Yun, Sun Zhongmiao, Cheng Guangyi. Precise Determination of Velocity for Airborne Gravimetry Using the GPS Doppler Observations[J]. Journal of Wuhan Technical University of Surveying and Mapping, 2000, 25(2):113-118 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb200002005
    [8]
    Kubo N, Pullen S. Instantaneous RTK Positioning Based on User Velocity Measurements[C]. The 21st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2008), Savannah, GA, 2008
    [9]
    Kubo N. Advantage of Velocity Measurements on Instantaneous RTK Positioning[J]. GPS Solutions, 2009, 13(4):271-280 doi: 10.1007/s10291-009-0120-9
    [10]
    杨元喜.自适应动态导航定位[M].北京:测绘出版社, 2006

    Yang Yuanxi. Adaptive Navigation and Kinematic Positioning[M].Beijing:Surveying and Mapping Press, 2006
    [11]
    Zhao S, Cui X, Guan F, et al. A Kalman Filter-Based Short Baseline RTK Algorithm for Single-Frequency Combination of GPS and BDS[J]. Sensors, 2014, 14(8):15415-15433 doi: 10.3390/s140815415
    [12]
    Dai F, Mao X. BDS/GPS Dual Systems Positioning Based on Kalman Filter in Urban Canyon Environments[C]. The 17th International IEEE Conference on Intelligent Transportation Systems, Qingdao, China, 2014
    [13]
    Teunissen P J G. The Least-Squares Ambiguity Decorrelation Adjustment:A Method for Fast GPS Integer Ambiguity Estimation[J]. Journal of Geodesy, 1995, 70(1-2):65-82 doi: 10.1007/BF00863419
    [14]
    Teunissen P J G. An Optimality Property of the Integer Least-Squares Estimator[J]. Journal of Geodesy, 1999, 73(11):587-593 doi: 10.1007/s001900050269
    [15]
    Teunissen P J G, Dennis O. Ambiguity Dilution of Precision: Definition, Properties and Application[C]. ION GPS 1997, Kansas City, MO, 1997
  • Related Articles

    [1]WANG Xiaolong, ZHANG Liming, YAN Haowen, LU Xiaomin. A Coordinate Encryption Algorithm for Vector Spatial Data Using Haar Transform and Gaussian Random Number[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1946-1955. DOI: 10.13203/j.whugis20200219
    [2]NI Haochen, WU Zhongjie, JIA Jian, XU Dibao, RUI Yikang, WANG Jiechen. A Gird Line Vectorization Method Based on Delaunay Triangulation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 184-189. DOI: 10.13203/j.whugis20140582
    [3]HU Wei, TAO Weidong, YUAN Zhenyu, WANG Jiechen. A Method of Vectorization of Scanning Map Based on Voronoi Diagrams[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 470-474.
    [4]HUANG Xionghua, WANG Hongxia, JIANG Weizhen, CUI Gengshen. An Adaptive Robust Audio Blind Watermarking Algorithm Using Dithering Quantization and SNR[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 121-125.
    [5]LI Fei, ZHOU Xiaoguang. A Self-intersecting Polygon Processing Algorithm in the Vectorization of Classified Raster Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 100-104.
    [6]WAN Xue. Generalized Point Photogrammetry Feature Extraction Based on Harris Operator and Vectorization[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 145-148.
    [7]ZHONG Heping, TANG Jinsong, ZHANG Sen, CHEN Ming. A Fast Phase Unwrapping Algorithm Based on Quantized Quality Map and Priority Queue[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 342-345.
    [8]ZHU Haijun, WU Huayi, LI Deren. DCT-Based GIS Vector Data Compression[J]. Geomatics and Information Science of Wuhan University, 2007, 32(12): 1123-1126.
    [9]Shen Weiming, Qiu Tong, Zeng Yong, Zhang Hua. Neural Network Based Vector Quantizer and Lossy Compressed Coding on Remotely Sensed Image[J]. Geomatics and Information Science of Wuhan University, 1996, 21(2): 124-127.
    [10]Yuan Guoliu. An Approach to the Design of the Vector Quantizer for Image Signals[J]. Geomatics and Information Science of Wuhan University, 1989, 14(1): 74-81.
  • Cited by

    Periodical cited type(5)

    1. 朱武松. 抗差Helmert分量估计在地铁CPⅢ控制网平差中的应用. 城市勘测. 2024(02): 133-136 .
    2. 王乐洋,孙坚强. 总体最小二乘回归预测模型的方差分量估计. 武汉大学学报(信息科学版). 2021(02): 280-288 .
    3. 王祝安,陈义,毛鹏宇. 加权整体最小二乘的验后估计在三维坐标转换中的应用. 大地测量与地球动力学. 2018(02): 216-220 .
    4. 王乐洋,李海燕,陈晓勇. 拟牛顿修正法解算不等式约束加权总体最小二乘问题. 武汉大学学报(信息科学版). 2018(01): 127-132 .
    5. 陶武勇,鲁铁定,许光煜,杨世安. 稳健总体最小二乘Helmert方差分量估计. 大地测量与地球动力学. 2017(11): 1193-1197 .

    Other cited types(6)

Catalog

    Article views (1749) PDF downloads (342) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return