FANG Liuyang, WANG Mi, PAN Jun. CPU/GPU Cooperative Fast Band Registration Method for Multispectral Imagery[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1000-1007. DOI: 10.13203/j.whugis20160218
Citation: FANG Liuyang, WANG Mi, PAN Jun. CPU/GPU Cooperative Fast Band Registration Method for Multispectral Imagery[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1000-1007. DOI: 10.13203/j.whugis20160218

CPU/GPU Cooperative Fast Band Registration Method for Multispectral Imagery

Funds: 

he National Natural Science Foundation of China 41601476

Research Project of Broadvision Engineering Consultants ZL-2015-03

More Information
  • Author Bio:

    FANG Liuyang, PhD, engineer, specializes in remote sensing data processing and traffic disaster prevention technology.E-mail:fangliuyang@stwip.com

  • Received Date: March 26, 2017
  • Published Date: July 04, 2018
  • With the rapid increase of data size of remote sensing images, the traditional serial band re-gistration method cannot meet the demand for real-time processing of big-data multispectral images. Therefore, a CPU/GPU cooperative fast band registration method for multispectral imagery is proposed in this paper. Firstly, the computational amount and degree of parallelism are analyzed; point matching and differential rectification are ported to GPU to execute while the affine transformation parameter is still calculated on CPU. Secondly, kernel task assignment and basic settings are made to ensure the two above GPU steps executable. Moreover, three performance optimization methods, including memory access optimization, instruction optimization and transmission/computation overlap, are designed to further improve the efficiency of band registration. The experimental results based on NVIDIA Tesla M2050 GPU and Intel Xeon E5650 CPU show that the running time of YG-26 multispectral image band registration is only 3.25 s with our method, which got a speedup ratio of 32.32 compared with the traditional CPU serial method. The proposed method can provide quasi-real-time processing capability for multispectral imagery with big data size.
  • [1]
    于海洋, 甘甫平, 党福星.高分辨率遥感影像波段配准误差试验分析[J].国土资源遥感, 2007, 19(3):39-42 doi: 10.6046/gtzyyg.2007.03.09

    Yu Haiyang, Gan Fuping, Dang Fuxing. An Experimental Analysis of Band to Band Registration Error in High Resolution Satellite Remote Sensing Imagery[J].Remote Sensing for Land & Resources, 2007, 19(3):39-42 doi: 10.6046/gtzyyg.2007.03.09
    [2]
    杨靖宇, 张永生, 李正国, 等.遥感影像正射纠正的GPU-CPU协同处理研究[J].武汉大学学报·信息科学版, 2011, 36(9):1043-1046 http://ch.whu.edu.cn/CN/abstract/abstract645.shtml

    Yang Jingyu, Zhang Yongsheng, Li Zhengguo, et al. GPU-CPU Cooperate Processing of RS Image Ortho-Rectification[J].Geomatics and Information Science of Wuhan University, 2011, 36(9):1043-1046 http://ch.whu.edu.cn/CN/abstract/abstract645.shtml
    [3]
    Fang L Y, Wang M, Li D R, et al. MOC-Based Parallel Preprocessing of ZY-3 Satellite Images[J]. IEEE Geoscience and Remote Sensing Letter, 2015, 12(2):419-423 doi: 10.1109/LGRS.2014.2345419
    [4]
    Hu X Y, Li X K, Zhang Y J. Fast Filtering of LiDAR Point Cloud in Urban Areas Based on Scan Line Segmentation and GPU Acceleration[J]. IEEE Geoscience and Remote Sensing Letter, 2013, 19(2):308-312 http://adsabs.harvard.edu/abs/2013IGRSL..10..308H
    [5]
    Sui H G, Peng F F, Xu C, et al. GPU-Accelerated MRF Segmentation Algorithm for SAR Images[J]. Computers & Geosciences, 2012, 43(2):159-166 https://www.deepdyve.com/lp/elsevier/gpu-accelerated-mrf-segmentation-algorithm-for-sar-images-3BXiT3i0i3
    [6]
    程博艳, 刘强, 李小文, 等.利用CUDA实现矢量地图栅格化的并行处理[J].测绘通报, 2014(11):97-101 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chtb201411024

    Cheng Boyan, Liu Qiang, Li Xiaowen, et al. Parallel Rasterization of Vector Polygon Based on CUDA[J]. Bulletin of Surveying and Mapping, 2014(11):97-101 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chtb201411024
    [7]
    陈茜, 邱跃洪, 易红伟.基于GPU的星图配准算法并行程序设计[J].红外与激光工程, 2014, 43(11):3756-3761 doi: 10.3969/j.issn.1007-2276.2014.11.044

    Chen Xi, Qiu Yuehong, Yi Hongwei. Parallel Programming Design of Star Image Registration Based on GPU[J].Infrared and Laser Engineering, 2014, 43(11):3756-3761 doi: 10.3969/j.issn.1007-2276.2014.11.044
    [8]
    朱智超. 基于GPU的多分辨率红外与可见光图像配准研究[D]. 南京: 南京航空航天大学, 2011

    Zhu Zhichao. Research on GPU-Based Multi-resolution Infrared and Visible Image Registration[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011
    [9]
    周海芳, 赵进.基于GPU的遥感图像配准并行程序设计与存储优化[J].计算机研究与发展, 2012, 49(1):281-286 https://www.cnki.com.cn/lunwen-1012020618.html

    Zhou Haifang, Zhao Jin. Parallel Programming Design and Storage Optimization of Remote Sensing Image Registration Based on GPU[J].Journal of Computer Research and Development, 2012, 49(1):281-286 https://www.cnki.com.cn/lunwen-1012020618.html
    [10]
    徐如林. 基于GPU的遥感图像配准并行算法研究及应用系统实现[D]. 长沙: 国防科技大学, 2014

    Xu Rulin. Study of Parallel Algorithms for Remote Sensing Image Registration Based on GPU and Implement of Application System[D]. Changsha: National University of Defense Technology, 2014
    [11]
    仇德元. GPGPU编程技术:从GLSL、CUDA到OpenCL[M].北京:机械工业出版社, 2011

    Qiu Deyuan. GPGPU Programming Technique:From GLSL, CUDA to OpenGL[M]. Beijing:China Machine Press, 2011
    [12]
    NVIDIA. CUDA C Programming Guide, V5. 0[S]. Santa Clara: NVIDIA Corporation, 2012
    [13]
    NVIDIA. CUDA C Best Practices Guide, V5. 0[S]. Santa Clara: NVIDIA Corporation, 2012
    [14]
    Kirk D, Hwu W M. Programming Massively Parallel Processors[M]. 2nd ed. Massachusetts:Morgan Kaufmann Publishers, 2012
    [15]
    NVIDIA. NVIDIA's White Paper of Precision & Performance: Floating Point and IEEE 754 Comp-liance for NVIDIA GPUs[S]. Santa Clara: NVIDIA Corporation, 2012
  • Related Articles

    [1]LI Dehai, WU Wentan, MA Huilin, BEI Jinzhong, ZHAO Yiyuan. Positioning Performance Analysis of Indoor Networks of Range-Based Reference Stations[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 1-10. DOI: 10.13203/j.whugis20220513
    [2]LIANG Wei, XU Xinyu, LI Jiancheng, LI Pengyuan, HUANG Jian, ZHU Tianlin, WANG Dongya, YUAN Gang. A New High Performance Scientific Computation Method for High Resolution Earth’s Gravity Field Model[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240321
    [3]SONG Minfeng, HE Xiufeng. Simulation and Analysis of the Spatiotemporal Performance of Spaceborne BDS3-R Polar Observations[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230262
    [4]ZHANG Xiaohong, ZHANG Yuantai, ZHU Feng. Factor Graph Optimization for Urban Environment GNSS Positioning and Robust Performance Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1050-1057. DOI: 10.13203/j.whugis20230203
    [5]LIU Jinshuo, LI Yangmei, JIANG Zhuangyi, DENG Juan, SUI Haigang, PAN Jeff. Fine-Grained Parallel Optimization of Large-Scale Data for PMVS Algorithm[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 608-616. DOI: 10.13203/j.whugis20160186
    [6]LI Shixue, SHEN Xin, YAO Huang, ZHANG Guo, LIU Yulin. Optimization of Lateral Swing Angles of Lunar Satellite for Region Multiple Strip Imaging Task Planning[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 593-600. DOI: 10.13203/j.whugis20170145
    [7]YAN Li, HUANG Dingfa, ZHU Dongwei. Development and Performance Analysis of a High Precision BDS Baseline Processing Software[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1785-1791. DOI: 10.13203/j.whugis20150452
    [8]YANG Zhaohui, CHEN Ying. Performance Evaluation of Edge Detectors Using Image Reconstruction[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 445-449.
    [9]ZHANG Jing, WANG Lili, LIN Xueyuan, YANG Zhiyong. A New Data-dependent Kernel Intelligent Optimization Method[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 110-113.
    [10]CHEN Nan. Performance Evaluation of the Structure of GNSS Navigation Message[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 512-515.
  • Cited by

    Periodical cited type(10)

    1. 费婷婷,丁晓婷,阙翔,林津,林健,王紫薇,刘金福. 基于SBM-DEA与STWR模型的中国能源碳排放效率时空异质性分析. 环境工程. 2024(10): 188-200 .
    2. 熊景华,郭生练,王俊,尹家波,李娜. 长江流域陆地水储量变化及归因研究. 武汉大学学报(信息科学版). 2024(12): 2241-2248 .
    3. 姜栋,赵文吉,王艳慧,万碧玉. 地理加权回归的城市道路时空运行态势空间网格计算方法. 武汉大学学报(信息科学版). 2023(06): 988-996 .
    4. 倪杰,吴通华,赵林,李韧,谢昌卫,吴晓东,朱小凡,杜宜臻,杨成,郝君明. 环北极多年冻土区碳循环研究进展与展望. 冰川冻土. 2019(04): 845-857 .
    5. 刘大元,张雪梅,岳跃民,王克林,邹冬生. 基于Geodetector的广西喀斯特植被覆盖变化及其影响因素分析. 农业现代化研究. 2019(06): 1038-1047 .
    6. 肖屹,何宗宜,苗静,潘峰,杨好. 利用搜索引擎数据模拟疾病空间分布. 测绘通报. 2018(02): 94-98 .
    7. 苗月鲜,方秀琴,吴小君,吴陶樱. 基于GWR模型的江西省山洪灾害区域异同性研究. 水土保持通报. 2018(01): 313-318+327 .
    8. 陈吕凤,朱国平. 基于地理加权模型的南设得兰群岛北部南极磷虾渔场空间分布影响分析. 应用生态学报. 2018(03): 938-944 .
    9. 张雪梅,王克林,岳跃民,童晓伟,廖楚杰,张明阳,姜岩. 生态工程背景下西南喀斯特植被变化主导因素及其空间非平稳性. 生态学报. 2017(12): 4008-4018 .
    10. 陈广威,陈吕凤,朱国平,徐玉成,田靖寰,丁博. 南乔治亚岛冬季南极磷虾渔场时空分布及其驱动因子. 生态学杂志. 2017(10): 2803-2810 .

    Other cited types(10)

Catalog

    Article views (1191) PDF downloads (277) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return