SONG Minfeng, HE Xiufeng. Simulation and Analysis of the Spatiotemporal Performance of Spaceborne BDS3-R Polar Observations[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230262
Citation: SONG Minfeng, HE Xiufeng. Simulation and Analysis of the Spatiotemporal Performance of Spaceborne BDS3-R Polar Observations[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230262

Simulation and Analysis of the Spatiotemporal Performance of Spaceborne BDS3-R Polar Observations

More Information
  • Received Date: April 08, 2024
  • Available Online: April 24, 2024
  • Objectives: The polar observation of the reflectance signals from various orbit types in the Beidou Satellite Navigation System III (BDS3) presents distinctive characteristics. This paper analyzes a 10-day simulation event of polar Beidou third-generation satellite navigation system reflectometry (BDS3 Reflectometry, BDS3-R) and proposes a novel spatiotemporal observation performance assessment method. Methods: Based on the concept of Knearest neighbors, a novel method for calculating temporal and azimuthal resolution is proposed. This research delves into the spatiotemporal performance of BDS3-R technology in polar observations, considering satellite orbit altitude and inclination. Results: The findings reveal that in the polar region (latitude > 66.34°), an increase in satellite orbit altitude leads to a gradual extension of revisit time and a reduction in spatial resolution. Specifically, at an orbit altitude of 800 km, the revisit period reaches approximately 35 hours, with an average spatial resolution of about 17.6 km. Furthermore, high-orbit satellites, such as GEO, demonstrate advantages in polar grazing observation events. Additionally, as the inclination of the BDS3-R orbit approaches 90 degrees, there is a gradual increase in the revisit period. However, BDS3-R exhibits blind areas in monitoring the polar center when the inclination is less than 80 degrees or greater than 100 degrees. Conclusions: Consequently, we recommend adopting a dual constellation design with inclinations of 70-80 degrees and 80-90 degrees. The analyses also show that polar observations tend to use larger reflector antenna inclinations and that pointing orientation has a significant effect on the number of reflection events. These research findings have substantial implications for future GNSS-R polar monitoring based on the BDS3 system.
  • [1]
    SONG M, HE X, JIA D, et al. Sea Surface States Detection in Polar Regions Using Measurements of GroundBased GNSS Interferometric Reflectometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-14.
    [2]
    FRANCESC MUNOZ-MARTIN J, ONRUBIA R, PASCUAL D, et al. Experimental Evidence of Swell Signatures in Airborne L5/E5a GNSS-Reflectometry[J]. Remote Sensing, 2020, 12(11):1759.
    [3]
    QIN L, LI Y. Wind Speed Retrieval Method for Shipborne GNSS-R[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19.
    [4]
    WANG Y, JADE MORTON Y. Coherent GNSS Reflection Signal Processing for High-Precision and HighResolution Spaceborne Applications[J]. IEEE Transactions on Geoscience and Remote Sensing, Institute of Electrical and Electronics Engineers Inc., 2021, 59(1):831-842.
    [5]
    CARDELLACH E, FABRA F, NOGUÉS-CORREIG O, et al. GNSS-R ground-based and airborne campaigns for ocean, land, ice, and snow techniques:Application to the GOLD-RTR data sets[J]. Radio Science, 2011, 46(5):1-16.
    [6]
    LOWE S T, LABRECQUE J L, ZUFFADA C, et al. First spaceborne observation of an Earth-reflected GPS signal[J]. Radio Science, 2002, 37(1):7-28.
    [7]
    CLARIZIA M P, GOMMENGINGER C P, GLEASON S T, et al. Analysis of GNSS-R delay-Doppler maps from the UK-DMC satellite over the ocean[J]. Geophysical Research Letters, 2009, 36(2):n/a-n/a.
    [8]
    ASGARIMEHR M, WICKERT J, REICH S. TDS-1 GNSS Reflectometry:Development and Validation of Forward Scattering Winds[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Institute of Electrical and Electronics Engineers, 2018, 11(11):4534-4541.
    [9]
    RODRIGUEZ-ALVAREZ N, HOLT B, JARUWATANADILOK S, et al. An Arctic sea ice multi-step classification based on GNSS-R data from the TDS-1 mission[J]. Remote Sensing of Environment, 2019, 230:111202.
    [10]
    SONG M, HE X, WANG X, et al. Study on the Exploration of Spaceborne GNSS-R Raw Data Focusing on Altimetry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:6142-6154.
    [11]
    CAMPS A, VALL·LLOSSERA M, PARK H, et al. Sensitivity of TDS-1 GNSS-R Reflectivity to Soil Moisture:Global and Regional Differences and Impact of Different Spatial Scales[J]. Remote Sensing, 2018, 10(11):
    [12]
    CARDELLACH E, LI W, RIUS A, et al. First Precise Spaceborne Sea Surface Altimetry with GNSS Reflected Signals[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, IEEE, 2020, 13:102-112.
    [13]
    CARTWRIGHT J, NGUYEN V, JALES P, et al. Sea Ice Classification and Altimetry using Grazing Angle Reflected GNSS Signals Measured by Spire’s Nanosatellite Constellation[J]. EGU21, Copernicus Meetings, 2021.
    [14]
    NGUYEN V A, NOGUÉS-CORREIG O, YUASA T, et al. Initial GNSS Phase Altimetry Measurements From the Spire Satellite Constellation[J]. Geophysical Research Letters, 2020, 47(15).
    [15]
    SONG M, HE X, ASGARIMEHR M, et al. Investigation on Geometry Computation of Spaceborne GNSS-R Altimetry over Topography:Modeling and Validation[J]. Remote Sensing, 2022, 14(9):2105.
    [16]
    CARDELLACH E, WICKERT J, BAGGEN R, et al. GNSS Transpolar Earth Reflectometry exploriNg System (G-TERN):Mission Concept[J]. IEEE Access, Institute of Electrical and Electronics Engineers Inc., 2018, 6:13980-14018.
    [17]
    WANG Yingqiang, YAN Wei, FU Yang, et al. Simulation of Impacts of Single LEO Satellite Orbit Parameters on GNSS Reflection Event's Distribution and Number[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12):1410-1414.(王迎强,严卫,符养,等.单颗LEO卫星轨道参数对GNSS反射事件分布和数量影响的模拟研究[J].武汉大学学报(信息科学版),2009, 34(12):1410.)
    [18]
    YANG Dongkai, WANG Feng, LI Weiqiang, et al. Simulation Analysis of BeiDou Reflection Events Based on LEO Satellites[J]. Chinese Journal of Radio Science, 2015, 30(3):409-416.(杨东凯,王峰,李伟强,等.基于低轨卫星的北斗反射事件仿真分析[J].电波科学学报,2015, 30(03):409-416.)
    [19]
    LIU Congliang, BAI Weihua, XIA Junming, et al. Simulation Study of Spaceborne GNSS-R Events[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6):826-831, 839. doi:10.13203/j.whugis20160161(柳聪亮,白伟华,夏俊明,等.低轨卫星星载GNSS反射事件模拟分析[J].武汉大学学报(信息科学版), 2018, 43(6):826-831, 839.)
    [20]
    WANG Feng, YANG Dongkai, ZHANG Bo. Spatiotemporal Performance of Spaceborne Global NavigationSatellites System Reflectometry[J]. Journal of Electronics&Information Technology, 2022, 44(2):760-766. doi:10.11999/JEIT201034.(王峰,杨东凯,张波.星载GNSS反射信号时-空性能仿真分析[J].电子与信息学报,2022, 44(2):760-766.)
    [21]
    BAI Weihua, ZHAO Danyang, XIA Junming, et al. Statistical Analysis of Simulated Space-Borne GNSS-R Data in Different Antenna Coverage and Installation Condition[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3):386-395. doi: 10.13203/j.whugis20190265.(白伟华,赵丹阳,夏俊明,等.不同反射天线覆盖和安装条件下星载GNSS-R关键参数的仿真分析[J].武汉大学学报(信息科学版),:1-15.)
    [22]
    MARKUS, T., NEUMANN, T., MARTINO, A., et al. The Ice, Cloud, and land Elevation Satellite-2(ICESat-2):science requirements, concept, and implementation[J]. Remote sensing of environment. 2017, 190, pp.260-273.
    [23]
    BUSSY-VIRAT, C.D., RUF C.S. and RIDLEY, A.J. Relationship between temporal and spatial resolution for a constellation of GNSS-R satellites. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing[J], 2018, 12(1), pp.16-25.
    [24]
    KELSO T S."Frequently Asked Questions:Two-Line Element Set Format[J]. Satellites Times,1998, 4(3):52-54.
    [25]
    SONG Minfeng, HE Xiufeng, WANG Xiaolei, et al. A GNSS-R geometry computation method considering the Earth's curvature and ellipsoidal height[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(6):884-894.(宋敏峰,何秀凤,王笑蕾,等.顾及地球曲率及椭球高的GNSS-R几何计算方法[J].测绘学报,2023, 52(6):884-894.)
    [26]
    SONG Minfeng, HE Xiufeng, WANG Xiaolei, et al. A New Initialization Method for Specular Points and Space Paths Computation in Spaceborne GNSS-R[J]. Geomatics and Information Science of Wuhan University. doi: 10.13203/j.whugis20220789.(宋敏峰,何秀凤,王笑蕾,等.星载GNSS-R镜面点及空间路径初始化新方法[J].武汉大学学报(信息科学版),2023:1-11.)
  • Related Articles

    [1]LIU Shuo, ZHANG Lei, LI Jian. A Modified Wide Lane Bootstrapping Ambiguity Resolution Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 637-642. DOI: 10.13203/j.whugis20150462
    [2]Wang Bing, Sui Lifen, Wang Wei, Ma Cheng. Rapid Resolution of Integer Ambiguity in Integrated GPS/Gyro Attitude Determination[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 128-133.
    [3]FENG Wei, HUANG Dingfa, YAN Li, LI Meng. GNSS Dual-Frequency Integer Relationship Constrained Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 945-948.
    [4]QIU Lei, HUA Xianghong, CAI Hua, WU Yue. Direct Calculation of Ambiguity Resolution in GPS Short Baseline[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 97-99.
    [5]WANG Xinzhou, HUA Xianghong, QIU Lei. A New Method for Integer Ambiguity Resolution in GPS Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 24-26.
    [6]LIU Zhimin, LIU Jingnan, JIANG Weiping, LI Tao. Ambiguity Resolution of GPS Short-Baseline Using Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7): 607-609.
    [7]LOU Yidong, LI Zhenghang, ZHANG Xiaohong. A Method of Short Baseline Solution without Cycle Slip Detection and Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 995-998.
    [8]YANG Rengui, OU Jikun, WANG Zhenjie ZHAO Chunmei, . Searching Integer Ambiguities in Single Frequency Single Epoch by Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 251-254.
    [9]P. J. G. Teunissen. A New Class of GNSS Ambiguity Estimators[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 757-762.
    [10]Chen Yongqi. An Approach to Validate the Resolved Ambiguities in GPS Rapid Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 342-345.

Catalog

    Article views (125) PDF downloads (18) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return